Efficacy of Biological and Chemical Control Agents Against the Potato Psyllid (Bactericera cockerelli Šulc) Under Field Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Meteorological Conditions
2.2. Target Insect
2.3. Target Crop
2.4. Experimental Design and Treatments
2.5. Application Methodology of Treatments
2.6. Entomological Variables and Visual Inspection Methodology for Field Assessment of Bactericera cockerelli Life Stages
2.7. Agronomic Variables
2.8. Methodology for the Diagnosis of the Purple-Top Complex and Zebra Chip Disease
2.9. Statistical Analysis
3. Results
3.1. Population Dynamics of the Potato Psyllid
3.2. Symptomatology of Purple-Top Complex in Plants and Zebra Chip Disease in Potato Tubers
3.3. Agronomic Response of Potato Crop Under the Presence of Bactericera cockerelli
4. Discussion
4.1. Analysis of Population Dynamics of the Potato Psyllid
4.2. Symptomatology of Purple-Top Complex in Plants and Zebra Chip in Potato Tubers
4.3. Influence on Yield and Commercial Quality of Tubers
4.4. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Orozco, C.E.; Reyes-Herrera, P.H.; Sosa, C.C.; Torres, R.T.; Manrique-Carpintero, N.C.; Lasso-Paredes, Z.; Cerón-Souza, I.; Yockteng, R. Wild Relatives of Potato (Solanum L. Sec. Petota) Poorly Sampled and Unprotected in Colombia. Crop Sci. 2024, 64, 225–243. [Google Scholar] [CrossRef]
- Kumar, D.; Dutt, S.; Raigond, P.; Changan, S.S.; Lal, M.K.; Sharma, D.; Singh, B. Potato Probiotics for Human Health. In Potato: Nutrition and Food Security; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K., Eds.; Springer: Singapore, 2020; pp. 271–287. ISBN 978-981-15-7662-1. [Google Scholar]
- Nicolao, R.; Gaiero, P.; Castro, C.M.; Heiden, G. Solanum malmeanum, a Promising Wild Relative for Potato Breeding. Front. Plant Sci. 2023, 13, 1046702. [Google Scholar] [CrossRef]
- Rondon, S.I.; Carrillo, C.C.; Cuesta, H.X.; Navarro, P.D.; Acuña, I. Latin America Potato Production. In Insect Pests of Potato; Elsevier: Amsterdam, The Netherlands, 2022; pp. 317–330. ISBN 978-0-12-821237-0. [Google Scholar]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Tobin, D.; Bates, R.; Brennan, M.; Gill, T. Peru Potato Potential: Biodiversity Conservation and Value Chain Development. Renew. Agric. Food Syst. 2018, 33, 19–32. [Google Scholar] [CrossRef]
- Maiti, R.K.; Singh, V. A Mini Review on Origin, History and Taxonomic Status of the Potato. FarmManage 2022, 7, 21–35. [Google Scholar] [CrossRef]
- Tang, D.; Jia, Y.; Zhang, J.; Li, H.; Cheng, L.; Wang, P.; Bao, Z.; Liu, Z.; Feng, S.; Zhu, X.; et al. Genome Evolution and Diversity of Wild and Cultivated Potatoes. Nature 2022, 606, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; He, X.Z.; Zhou, P.; Wang, Q. Life History and Behavior of Tamarixia Triozae Parasitizing the Tomato-Potato Psyllid, Bactericera cockerelli. Biol. Control. 2023, 179, 105152. [Google Scholar] [CrossRef]
- Gebiola, M.; Mauck, K.E. Symbiont Infection and Psyllid Haplotype Influence Phenotypic Plasticity during Host Switching Events. Ecol. Entomol. 2024, 49, 719–733. [Google Scholar] [CrossRef]
- Wenninger, E.J.; Rashed, A. Biology, Ecology, and Management of the Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and Zebra Chip Disease in Potato. Annu. Rev. Entomol. 2024, 69, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Vereijssen, J.; Smith, G.R.; Weintraub, P.G. Bactericera cockerelli (Hemiptera: Triozidae) and Candidatus Liberibacter Solanacearum in Potatoes in New Zealand: Biology, Transmission, and Implications for Management. J. Integr. Pest Manag. 2018, 9, 13. [Google Scholar] [CrossRef]
- Sumner-Kalkun, J.C.; Sjölund, M.J.; Arnsdorf, Y.M.; Carnegie, M.; Highet, F.; Ouvrard, D.; Greenslade, A.F.C.; Bell, J.R.; Sigvald, R.; Kenyon, D.M. A Diagnostic Real-Time PCR Assay for the Rapid Identification of the Tomato-Potato Psyllid, Bactericera cockerell (Šulc, 1909) and Development of a Psyllid Barcoding Database. PLoS ONE 2020, 15, e0230741. [Google Scholar] [CrossRef]
- Suwandharathne, N.I.; Holwell, G.I.; Avila, G.A. Current and Future Potential Geographical Distribution of Bactericera cockerelli: An Invasive Pest of Increasing Global Importance. Austral Entomol. 2023, 62, 488–502. [Google Scholar] [CrossRef]
- Vereijssen, J. Bactericera cockerelli (Tomato/Potato Psyllid). CABI Compendium. CABI Int. 2022. [Google Scholar] [CrossRef]
- Gamarra, H.; Correa, Y.; Huaman, E.; Kreuze, J. Reporte Sobre Colecta de Bactericera cockerelli En Huancabamba-Piura, Perú; International Potato Center: La Molina, Peru, 2022; p. 21. [Google Scholar]
- Sarkar, S.C.; Hatt, S.; Philips, A.; Akter, M.; Milroy, S.P.; Xu, W. Tomato Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) in Australia: Incursion, Potential Impact and Opportunities for Biological Control. Insects 2023, 14, 263. [Google Scholar] [CrossRef] [PubMed]
- Bastas, K.K. Bacterial Diseases of Potato and Their Control. In Potato Production Worldwide; Academic Press: Cambridge, MA, USA, 2023; pp. 179–197. ISBN 978-0-12-822925-5. [Google Scholar]
- Wan, J.; Wang, R.; Ren, Y.; McKirdy, S. Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production. Insects 2020, 11, 298. [Google Scholar] [CrossRef]
- Munyaneza, J.E. Zebra Chip Disease, Candidatus Liberibacter, and Potato Psyllid: A Global Threat to the Potato Industry. Am. J. Potato Res. 2015, 92, 230–235. [Google Scholar] [CrossRef]
- Cohen, A.; Basu, S.; Crowder, D.W. Drought Stress Affects Interactions between Potato Plants, Psyllid Vectors, and a Bacterial Pathogen. FEMS Microbiol. Ecol. 2023, 99, fiac142. [Google Scholar] [CrossRef]
- Huot, O.B.; Tamborindeguy, C. Drought Stress Affects Solanum lycopersicum Susceptibility to Bactericera cockerelli Colonization. Entomol. Exp. Appl. 2017, 165, 70–82. [Google Scholar] [CrossRef]
- Cerna, E.; Ochoa, Y.; Aguirre, L.; Flores, M.; Landeros, J. Determination of Insecticide Resistance in Four Populations of Potato Psillid Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). Phyton 2013, 82, 63–68. [Google Scholar] [CrossRef]
- Hu, W.; Wang, K.; Zhong, X.; Jiang, P.; Zhang, S.; Lu, Z.; Zhang, Z.; Yi, L.; Zhang, N. Enhanced Control Efficacy of Different Insecticides Mixed with Mineral Oil Against Asian Citrus Psyllid, Diaphorina citri Kuwayama, Under Varying Climates. Insects 2025, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Lewis, O.M.; Michels, G.J.; Pierson, E.A.; Heinz, K.M. A Predictive Degree Day Model for the Development of Bactericera cockerelli (Hemiptera: Triozidae) Infesting Solanum tuberosum. Environ. Entomol. 2015, 44, 1201–1209. [Google Scholar] [CrossRef]
- Page-Weir, N.E.M.; Jamieson, L.E.; Chhagan, A.; Connolly, P.G.; Curtis, C. Efficacy of Insecticides against the Tomato/Potato Psyllid (Bactericera cockerelli). NZPP 2011, 64, 276–281. [Google Scholar] [CrossRef]
- Ocampo-Hernández, J.A.; Tamayo-Mejía, F.; Tamez-Guerra, P.; Gao, Y.; Guzmán-Franco, A.W. Different Host Plant Species Modifies the Susceptibility of Bactericera cockerelli to the Entomopathogenic Fungus Beauveria Bassiana. J. Appl. Entomol. 2019, 143, 984–991. [Google Scholar] [CrossRef]
- Karaborklu, S. Biocontrol Potential of Beauveria Bassiana and Metarhizium Anisopliae Isolates from Turkey against Hyphantria Cunea (Drury) (Lepidoptera: Arctiidae) Larvae under Laboratory and Field Conditions. Biosci. J. 2022, 38, e38015. [Google Scholar] [CrossRef]
- Servicio Nacional de Sanidad Agraria (SENASA). Resolución Jefatural N° D000141-2024-MIDAGRI-SENASA-JN; Ministerio de Desarrollo Agrario y Riego: Lima, Peru, 2024. [Google Scholar]
- Burckhardt, D.; Lauterer, P. A Taxonomic Reassessment of the Triozid Genus Bactericera (Hemiptera: Psylloidea). J. Nat. Hist. 1997, 31, 99–153. [Google Scholar] [CrossRef]
- Eyer, J.R.; Crawford, R.F. Observations on the Feeding Habits of the Potato Psyllid (Paratrioza cockerelli Sulc.) and the Pathological History of the “Psyllid Yellows” Which It Produces. J. Econ. Entomol. 1933, 26, 846–850. [Google Scholar] [CrossRef]
- Vereijssen, J. Ecology and Management of Bactericera cockerelli and Candidatus Liberibacter Solanacearum in New Zealand. J. Integr. Agric. 2020, 19, 333–337. [Google Scholar] [CrossRef]
- Veronesi, E.R.; Thompson, C.J.; Goldson, S.L. Insect Biological Control of the Tomato-Potato Psyllid Bactericera cockerelli, a Review. N. Z. J. Crop Hortic. Sci. 2023, 53, 795–811. [Google Scholar] [CrossRef]
- Gutiérrez-Rosales, R.O.; Espinoza-Trelles, J.A.; Bonierbale, M. UNICA: Variedad Peruana Para Mercado Fresco y Papa Frita Con Tolerancia y Resistencia Para Condiciones Climáticas Adversas. Rev. Latinoam. Papa 2016, 14, 41–50. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Riego (MINAGRI). Decreto Supremo N.° 010-2018-MINAGRI, Que Aprueba El Reglamento Específico de Semillas de Papa; Lima, Peru, 2018. Available online: https://www.gob.pe/institucion/midagri/normas-legales/190800-010-2018-minagri (accessed on 20 November 2025).
- Butler, C.D.; Trumble, J.T. The Potato Psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): Life History, Relationship to Plant Diseases, and Management Strategies. Terr. Arthropod. Rev. 2012, 5, 87–111. [Google Scholar] [CrossRef]
- Greenway, G.A.; Rondon, S. Economic Impacts of Zebra Chip in Idaho, Oregon, and Washington. Am. J. Potato Res. 2018, 95, 362–367. [Google Scholar] [CrossRef]
- Jackson, M.A.; Dunlap, C.A.; Jaronski, S.T. Ecological Considerations in Producing and Formulating Fungal Entomopathogens for Use in Insect Biocontrol. BioControl 2010, 55, 129–145. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jaronski, S.T. The Production and Uses of Beauveria Bassiana as a Microbial Insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
- Lacey, L.A.; Liu, T.-X.; Buchman, J.L.; Munyaneza, J.E.; Goolsby, J.A.; Horton, D.R. Entomopathogenic Fungi (Hypocreales) for Control of Potato Psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in an Area Endemic for Zebra Chip Disease of Potato. Biol. Control. 2011, 56, 271–278. [Google Scholar] [CrossRef]
- Inglis, G.D.; Goettel, M.S.; Butt, T.M.; Strasser, H. Use of Hyphomycetous Fungi for Managing Insect Pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI Publishing: UK, 2001; pp. 23–69. ISBN 978-0-85199-356-0. [Google Scholar]
- International Potato Center. Informe de Visita a Huancabamba, Piura de Comitiva SENASA Nivel Central Intervención de Especialistas SENASA-CIP; International Potato Center: Lima, Peru, 2022; p. 13. ISBN 978-92-9060-652-9. [Google Scholar]
- Roque Enriquez, A.; Beltrán Beache, M.; Ochoa Fuentes, Y.M.; Delgado Ortiz, J.C. Parámetros Poblacionales de Bactericera cockerelli En Plantas de Tomate Tratadas Con Menadiona. Remexca 2024, 15, e3349. [Google Scholar] [CrossRef]
- Yang, X.-B.; Zhang, Y.-M.; Hua, L.; Peng, L.-N.; Munyaneza, J.E.; Trumble, J.T.; Liu, T.-X. Repellency of Selected Biorational Insecticides to Potato Psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). Crop Prot. 2010, 29, 1320–1324. [Google Scholar] [CrossRef]
- Munyaneza, J.E. Zebra Chip Disease of Potato: Biology, Epidemiology, and Management. Am. J. Pot. Res. 2012, 89, 329–350. [Google Scholar] [CrossRef]
- Cameron, P.J.; Surrey, M.R.; Wigley, P.J.; Anderson, J.A.D.; Hartnett, D.E.; Wallace, A.R. Seasonality of Bactericera cockerelli in Potatoes (Solanum Tuberosum) in South Auckland, New Zealand. New Zealand J. Crop Hortic. Sci. 2009, 37, 295–301. [Google Scholar] [CrossRef]
- De Haan, S.; Forbes, A.; Amoros, W.; Gastelo, M.; Salas, E.; Hualla, V.; De Mendiburu, F.; Bonierbale, M. Metodologías de Evaluación Estándar y Manejo de Datos de Clones Avanzados de Papa; Modulo 2: Evaluación del rendimiento de tubérculos sanos de clones avanzados de papa. Guía para Colaboradores Internacionales; Centro Internacional de la Papa: Lima, Perú, 2014; p. 44. [Google Scholar]
- Liefting, L.W.; Sutherland, P.W.; Ward, L.I.; Paice, K.L.; Weir, B.S.; Clover, G.R.G. A New ‘Candidatus Liberibacter’ Species Associated with Diseases of Solanaceous Crops. Plant Dis. 2009, 93, 208–214. [Google Scholar] [CrossRef]
- Vanderplank, J. Plant Diseases: Epidemics and Control; Academic Press: Cambridge, MA, USA, 1963. [Google Scholar]
- R Core Team. Available online: https://www.r-project.org/ (accessed on 13 August 2025).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. lme4: Linear Mixed-Effects Models Using “Eigen” and S4. 2025. Available online: https://CRAN.R-project.org/package=lme4 (accessed on 20 November 2025).
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of Linear Mixed-Effects Models to Violations of Distributional Assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Lenth, R.V.; Bolker, B.; Buerkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Piaskowski, J.; Riebl, H.; et al. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; CRAN: Wien, Austria, 2024. [Google Scholar] [CrossRef]
- Yang, R.-C. Towards understanding and use of mixed-model analysis of agricultural experiments. Can. J. Plant Sci. 2010, 90, 605–627. [Google Scholar] [CrossRef]
- Tanaka, E.; Hui, F.K.C. Symbolic Formulae for Linear Mixed Models. In Statistics and Data Science. RSSDS 2019. Communications in Computer and Information Science; Nguyen, H., Ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Cerna, E.; Ail, C.; Landeros, J.; Sánchez, S.; Badii, M.; Aguirre, L.; Ochoa, Y. Comparación de la toxicidad y selectividad de insecticidas para la plaga Bactericera cockerelli y su depredador Chrysoperla carnea. Agrociencia 2012, 46, 783–793. [Google Scholar]
- Chandra Teja, K.N.P.; Rahman, S.J. Characterisation and Evaluation of Metarhizium Anisopliae (Metsch.) Sorokin Strains for Their Temperature Tolerance. Mycology 2016, 7, 171–179. [Google Scholar] [CrossRef]
- Harrison, K.; Mendoza-Herrera, A.; Levy, J.G.; Tamborindeguy, C. Lasting Consequences of Psyllid (Bactericera cockerelli L.) Infestation on Tomato Defense, Gene Expression, and Growth. BMC Plant. Biol. 2021, 21, 114. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Rumbos, C.I.; Kontodimas, D.C. Influence of Temperature and Relative Humidity on the Insecticidal Efficacy of Metarhizium Anisopliae against Larvae of Ephestia Kuehniella (Lepidoptera: Pyralidae) on Wheat. J. Insect. Sci. 2017, 17, 22. [Google Scholar] [CrossRef]
- Pacheco Hernández, M.L.; Reséndiz Martínez, J.F.; Arriola Padilla, V.J.; Pacheco Hernández, M.d.L.; Reséndiz Martínez, J.F.; Arriola Padilla, V.J. Organismos entomopatógenos como control biológico en los sectores agropecuario y forestal de México: Una revisión. Rev. Mex. Cienc. For. 2019, 10, 4–32. [Google Scholar] [CrossRef]
- Djaman, K.; Higgins, C.; O’Neill, M.; Begay, S.; Koudahe, K.; Allen, S. Population Dynamics of Six Major Insect Pests During Multiple Crop Growing Seasons in Northwestern New Mexico. Insects 2019, 10, 369. [Google Scholar] [CrossRef]
- Mora, V.; Ramasamy, M.; Damaj, M.B.; Irigoyen, S.; Ancona, V.; Avila, C.A.; Vales, M.I.; Ibanez, F.; Mandadi, K.K. Identification and Characterization of Potato Zebra Chip Resistance Among Wild Solanum Species. Front. Microbiol. 2022, 13, 857493. [Google Scholar] [CrossRef]
- Stoop, W.A.; Adam, A.; Kassam, A. Comparing Rice Production Systems: A Challenge for Agronomic Research and for the Dissemination of Knowledge-Intensive Farming Practices. Agric. Water Manag. 2009, 96, 1491–1501. [Google Scholar] [CrossRef]
- Jacques, M.M.; Gumiere, S.J.; Gallichand, J.; Celicourt, P.; Gumiere, T. Impacts of Water Stress Severity and Duration on Potato Photosynthetic Activity and Yields. Front. Agron. 2020, 2, 590312. [Google Scholar] [CrossRef]
- Li, F.; Deng, H.; Wang, Y.; Li, X.; Chen, X.; Liu, L.; Zhang, H. Potato Growth, Photosynthesis, Yield, and Quality Response to Regulated Deficit Drip Irrigation under Film Mulching in a Cold and Arid Environment. Sci. Rep. 2021, 11, 15888. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Huamán, G.; Morocho-Romero, H.; Casas-Niño, S.; Vilchez-Navarro, S.; Velarde-Apaza, L.D.; Ramirez-Rojas, M.; Cruz, J.; Lozano-Isla, F. Efficacy of Biological and Chemical Control Agents Against the Potato Psyllid (Bactericera cockerelli Šulc) Under Field Conditions. Int. J. Plant Biol. 2025, 16, 136. https://doi.org/10.3390/ijpb16040136
Cárdenas-Huamán G, Morocho-Romero H, Casas-Niño S, Vilchez-Navarro S, Velarde-Apaza LD, Ramirez-Rojas M, Cruz J, Lozano-Isla F. Efficacy of Biological and Chemical Control Agents Against the Potato Psyllid (Bactericera cockerelli Šulc) Under Field Conditions. International Journal of Plant Biology. 2025; 16(4):136. https://doi.org/10.3390/ijpb16040136
Chicago/Turabian StyleCárdenas-Huamán, Gabriela, Henry Morocho-Romero, Sebastian Casas-Niño, Sandy Vilchez-Navarro, Leslie D. Velarde-Apaza, Max Ramirez-Rojas, Juancarlos Cruz, and Flavio Lozano-Isla. 2025. "Efficacy of Biological and Chemical Control Agents Against the Potato Psyllid (Bactericera cockerelli Šulc) Under Field Conditions" International Journal of Plant Biology 16, no. 4: 136. https://doi.org/10.3390/ijpb16040136
APA StyleCárdenas-Huamán, G., Morocho-Romero, H., Casas-Niño, S., Vilchez-Navarro, S., Velarde-Apaza, L. D., Ramirez-Rojas, M., Cruz, J., & Lozano-Isla, F. (2025). Efficacy of Biological and Chemical Control Agents Against the Potato Psyllid (Bactericera cockerelli Šulc) Under Field Conditions. International Journal of Plant Biology, 16(4), 136. https://doi.org/10.3390/ijpb16040136

