Rhizobium sp. as a Growth Inducer of Phaseolus vulgaris L., Determining the Qualitative Chemical Composition of Its Ethyl Acetate Extract Using High-Resolution Liquid Chromatography Coupled with Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Growth Media and Conditions
2.1.1. Revitalization of Bacterial Strains
2.1.2. Bacterial Strain Fermentation
2.1.3. In Vitro Growth-Stimulating Effect of Bacterial Strains
2.2. Ethyl Acetate Crude Extract
2.3. Sample Clean-Up
2.4. UHPLC-ESI-HRMS/MS Conditions and Data Analysis
3. Results
3.1. Determination of In Vitro Growth-Stimulating Effect of Bacterial Strains
3.2. UHPLC-ESI-HRMS/MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calero, A.H.; Quintero, E.R.; Olivera, D.V.; Pérez, Y.D.; Castro, I.L.; Jiménez, J.; López, E.D. Respuesta de dos cultivares de frijol común a la aplicación foliar de microorganismos eficientes. Cultiv. Trop. 2018, 39, 5–10. [Google Scholar]
- Oficina Nacional de Estadística. Anuario Estadístico de Guantánamo 2020. Edición 2021. 265p. Available online: www.onei.gob.cu (accessed on 15 December 2024).
- Quintero, R.E.; Calero, H.A.; Pérez, D.Y.; Enríquez, G.L. Efecto de diferentes bioestimulantes en el rendimiento del frijol común. Rev. Cent. Agrícola 2018, 45, 73–80. [Google Scholar]
- Chen, S.; Chen, D.; Cai, R.; Cui, H.; Long, Y.; Lu, Y.; Li, C.; She, Z. Cytotoxic and Antibacterial Preussomerins from the Mangrove Endophytic Fungus Lasiodiplodia theobromae. ZJ-HQ1. J. Nat. Prod. 2016, 79, 2397–2402. [Google Scholar] [CrossRef] [PubMed]
- Palacio, R.R.; Ramos, B.P.; Coria-Arellano, J.L.; Nava, R.B.; Sáenz-Mata, J. Mecanismos de las PGPR para mitigar el estrés abiótico de plantas. Árido-Ciencia 2016, 1, 4–11. [Google Scholar]
- Rojas-Badía, M.M.; Bello-González, M.A.; Ríos-Rocajull, Y.; Lugo-Moya, D.; Rodríguez-Sánchez, J. Utilización de cepas de Bacillus como promotores de crecimiento en hortalizas comerciales. Acta Agronómica 2020, 69, 54–60. [Google Scholar] [CrossRef]
- Rivera Ortuña, F.N.; Guevara-Luna, J.; Yan, J.; Lopez Amezcua, E.; Arroyo-Herrera, I.; Li, Y.; Vásquez-Murrieta, M.S.; Rojas Arellano, D.; Wang, E.T. Rhizobium hidalgonense and Rhizobium redzepovicii as faba bean (Vicia faba L.) microsymbionts in Mexican soils. Arch. Microbiol. 2024, 206, 281. [Google Scholar] [CrossRef]
- Emisha, L.; Abera, D.; Fayisa, H. Effect of NPS Rate and Rhizobium Inoculation on Yield and Yield Components of Common Bean (Phaseolus vulgari L.) at Kellem Wollega Zone, Western Oromia, Ethiopia. Adv. Biosci. Bioeng. 2024, 12, 81–92. [Google Scholar] [CrossRef]
- Granda-Mora, K.; Correa-Ullauri, C.; Collahuazo-Reinoso, Y.; Robles-Carrión, Á. Inoculantes microbianos comerciales con PGPR sobre variables productivas y económicas de fríjol común (Phaseolus vulgaris L.). Agron. Mesoam. 2024, 35, 55654. [Google Scholar] [CrossRef]
- Horácio, E.H.; Zucareli, C.; Gavilanes, F.Z.; Yunes, J.S.; Sanzovo, A.W.; Andrade, D.S. Co-inoculation of rhizobia, azospirilla and cyanobacteria for increasing common bean production. Semin.-Cienc. Agrar. 2020, 41, 2015–2028. [Google Scholar] [CrossRef]
- De Oliveira, K.S.; Telles, T.S.; Andrade, D.S.; Yunes, J.S.; Mendes, A.D.R.; Volsi, B. Co-inoculation with Rhizobium, Azospirillum, and microalgae increases common bean yield and profitability. Agron. J. 2024, 117, e21719. [Google Scholar] [CrossRef]
- Jha, C.K.; Saraf, M. Plant growth promoting Rhizobacteria (PGPR): A review. J. Agric. Res. Dev. 2015, 5, 108–119. [Google Scholar]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Martínez, V.R.; López, M.; Brossard, F.M.; Tejeda, G.G.; Pereira, A.H.; Parra, Z.C.; Rodríguez, S.J.; Alba, A. Procedimientos Para el Estudio y Fabricación de Biofertilizantes Bacterianos; INIA: Maracay, Venezuela, 2006. [Google Scholar]
- Fernández, G.L.; Shagarodsky, S.T.; Cristóbal, S.R.; Muñoz de Con, L.; Gil, V.J.F.; Sánchez, R.Y.; González, C.D.M.; Moreno, F.V.; Fundora, M.Z.M.; Castiñeira, A.L.; et al. Catálogo de Variedades; INIFAT: Havana, Cuba, 2014; 165p. [Google Scholar]
- Rodríguez, S.J. Formulación de un Bioproducto Mixto a Partir de Azotobacter chroococcum y Bacillus subtilis Para el Tratamiento de Semillas de Tomate (Solanum lycopersicum L.). Doctoral Dissertation, University of Havana, Havana, Cuba, 2010. [Google Scholar]
- International Seed Testing Association (ISTA). International Rules for Seed Testing. Seed Sci. Technol. 1999, 27, 25–30. [Google Scholar]
- Moeinzadeh, A.; Sharif-Zahed, F.; Ahmadzadeh, M.; Heidari, F. Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust. J. Crop Sci. 2010, 4, 564–570. [Google Scholar]
- Lerch, G. La Experimentación en las Ciencias Biológicas y Agrícolas; Editorial Científico-Técnico: Havana, Cuba, 1987. [Google Scholar]
- Wright, W.; Little, J.; Liu, F.; Chakraborty, R. Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii. Biometals 2013, 26, 271–283. [Google Scholar] [CrossRef]
- Pluhácek, T.; Lemr, K.; Ghosh, D.; David Milde, D.; Novák, J.; Havlícek, V. Characterization of microbial siderophores by mass spectrometry. Mass Spectrom. Rev. 2016, 35, 35–47. [Google Scholar] [CrossRef]
- Sendi, Y.; Pfeiffer, T.; Koch, E.; Mhadhbi, H.; Mrabet, M. Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. J. Plant Dis. Prot. 2020, 4, 453–462. [Google Scholar] [CrossRef]
- Valero-Valero, N.O.; Vergel-Castro, C.M.; Ustate, Y.; Gómez-Gómez, L.C. Bioestimulación de frijol guajiro y su simbiosis con Rhizobium por ácidos húmicos y Bacillus mycoides. Rev. Biotecnol. Sect. Agropecu. Agroindustrial 2021, 19, 119–134. [Google Scholar]
- Castillo, A.C. Evaluación de Rizobacterias Promotoras del Crecimiento Vegetal en Frijol (Phaseolus vulgaris L.) var. Mantequilla. Bachelor’s Thesis, Universidad Nacional de Loja, Loja, Ecuador, 2016. [Google Scholar]
- Ortiz, Y.; Ríos, Y.; Aguado, Y.; Rodríguez, L.C.; Lorenzo, Y.; Deliz, L.; Álvarez, M.E.; Rodríguez, J.; Zulueta, I.; Fresneda, J.A. Selección de cepas bacterianas con potencial estimulador del crecimiento vegetal en Phaseolus vulgaris L. (CV. ‘LEWA’). Agrotec. Cuba 2021, 45, 42–58. [Google Scholar]
- Vega-Celedón, P.; Canchignia Martínez, H.; González, M.; Seeger, M. Biosynthesis of indole-3-acetic acid and plant growth promoting by bacteria. Cultiv. Trop. 2016, 37, 33–39. [Google Scholar]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Vicent, A.; Sancho Ortega, J.; Baigorri, R.; San-Francisco, S. El efecto de los antioxidantes sobre el estrés oxidativo en los cultivos. Phytoma España 2019, 314, 76–79. [Google Scholar]
- Zhao, Q.; Chen, L.; Dong, K.; Dong, Y.; Xiao, J. Cinnamic Acid Inhibited Growth of Faba Bean and Promoted the Incidence of Fusarium Wilt. Plants 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, L.-Y.; Cao, J.; Li, Y.-L.; Ding, L.-N.; Zhu, K.-M.; Yang, Y.-H.; Tan, X.-L. Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. Front. Plant Sci. 2019, 10, 1314. [Google Scholar] [CrossRef]
- Imada, E.L.; de Paiva Rolla dos Santos, A.A.; De Oliveira, A.L.M.; Hungria, M.; Rodrigues, E.P. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Res. Microbiol. 2017, 168, 283–292. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Zhang, L.; Mu, J.; Jiang, Y.; Fu, H.; Zhang, Y.; Cui, H.; Yu, X.; Ye, Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023, 11, 2077. [Google Scholar] [CrossRef]
- Gilbert, S.; Xu, J.; Acosta, K.; Poulev, A.; Lebeis, S.; Lam, E. Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between Duckweeds and Endophytes. Front. Chem. 2018, 6, 265. [Google Scholar] [CrossRef]
- Goud, M.S.; Sharma, S.K.; Kharbikar, L.L.; Prasanna, R.; Sangwan, S.; Dahuja, A.; Dixit, A. Bacillus species consortium with tryptophan-dependent and independent pathways mediated production of IAA and its derivatives modulates soil biological properties, growth and yield of wheat. Plant Soil 2024, 1–27. [Google Scholar] [CrossRef]
- Revelou, P.K.; Kokotou, M.; Constantinou-Kokotou, V. Identification of Auxin Metabolites in Brassicaceae by Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Molecules 2019, 24, 2615. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of Flavone, Flavonol, and Flavanone Aglycones by Negative Ion Liquid Chromatography Electrospray Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Yuce, M.; Ekinci, M.; Turan, M.; Agar, G.; Aydin, M.; Ilhan, E.; Yildirim, E. Chrysin mitigates copper stress by regulating antioxidant enzymes activity, plant nutrient and phytohormones content in pepper. Sci. Hortic. 2024, 328, 112887. [Google Scholar] [CrossRef]
- Garcia-Arenal, F.; Fraile, A.; Sagasta, E.M. The multiple phytoalexin response of bean (Phaseolus vulgaris) to infection by Botrytis cinerea. Physiol. Plant Path. 1978, 13, 151–156. [Google Scholar] [CrossRef]
- Graham, T.L. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 1998, 31, 135–144. [Google Scholar] [CrossRef]
- Graham, T.L.; Graham, M.Y.; Stacey, G.; Keen, N. Defense potentiation and elicitation competency redox conditioning. Plant Microbe Interact. 2000, 5, 181–220. [Google Scholar]
- Berhow, M.A. Flavonoid accumulation in tissue and cell culture: Studies in citrus and other plant species. In Flavonoids in the Living System; Manthey, J.A., Buslig, B.S., Eds.; Springer: Boston, MA, USA, 1998; pp. 67–84. [Google Scholar]
- Morkunas, I.; Ratajczak, L. Biosynthesis and physiological activity of genistein in plants. In Recent Progress in Medicinal Plants. Flavonoids and Antioxidants Vol 43—Phytotherapeutics; Pathak, M., Govil, J.N., Eds.; Studium Press LLC: Houston, TX, USA, 2016. [Google Scholar]
- Rivera-Vargas, L.I.; Schmitthenner, A.F.; Graham, T.L. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 1993, 32, 851–857. [Google Scholar]
- Singh, H.B.; Keswani, C.; Reddy, M.S.; Sansinenea, E.; García-Estrada, C. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications; Springer Nature: Singapore, 2019. [Google Scholar] [CrossRef]
- Yildiztugay, E.; Ozfidan-Konakci, C.; Kucukoduk, M.; Turkan, I. Flavonoid Naringenin Alleviates Short-Term Osmotic and Salinity Stresses Through Regulating Photosynthetic Machinery and Chloroplastic Antioxidant Metabolism in Phaseolus vulgaris. Front. Plant Sci. 2020, 11, 682. [Google Scholar] [CrossRef]
- Khader, B.; Agsar, D.; Mahadevaswamy, D.; Reshma, R. Isolation, characterization and screening of Rhizobium from leguminous plant. Pharma Innov. J. 2023, 12, 1581–1591. Available online: https://www.thepharmajournal.com/archives/2023/vol12issue11/PartS/12-10-167-110.pdf (accessed on 1 February 2025).
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants 2022, 11, 3065. [Google Scholar] [CrossRef]
Genus/Species | Strain Code INIFAT Collection | Provenance/Location |
---|---|---|
Rhizobium | F7 | Isolated from nodules of common bean accession P3613 (year 2021) |
Identity | Compound Name | Molecular Formula | [M−H]− Experimental (m/z) | [M−H]− Theoretical (m/z) | Main Ms2 Fragments |
---|---|---|---|---|---|
1 | cinnamic acid | C9H8O2 | 147.0358 | 147.0446 | 129, 103, 85 |
2 | p-coumaric acid | C9H8O3 | 163.0330 | 163.0395 | 135, 119, 101, 91 |
3 | dihydro p-coumaric acid | C9H10O3 | 165. 0609 | 165.0552 | 147, 121 |
4 | dihydrocaffeic acid | C9H10O4 | 181.0508 | 181.0501 | 163, 135 |
5 | indole-3-lactic acid | C11H11NO3 | 204.0651 | 204.0661 | 204, 186, 158, 130, 116 |
6 | chrysin | C15H10O4 | 253.0510 | 253.0501 | 253, 225, 209, 181 |
7 | genistein | C15H10O5 | 269.0460 | 269.0450 | 269, 241, 227, 225, 201, 197, 183, 181, 159 |
8 | naringenin | C15H12O5 | 271.1666 | 271.0607 | na |
9 | siderophore B | C31H54N6O15 | 749.3759 | 749.3720 | na [20] |
10 | siderophore C | C33H54N6O15 | 773.3841 | 775.3568 | na [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, G.; Ríos, Y.; García, T.H.; Louis, Y.; Spengler, I.; Ortiz, Y. Rhizobium sp. as a Growth Inducer of Phaseolus vulgaris L., Determining the Qualitative Chemical Composition of Its Ethyl Acetate Extract Using High-Resolution Liquid Chromatography Coupled with Mass Spectrometry. Int. J. Plant Biol. 2025, 16, 37. https://doi.org/10.3390/ijpb16010037
Hernández G, Ríos Y, García TH, Louis Y, Spengler I, Ortiz Y. Rhizobium sp. as a Growth Inducer of Phaseolus vulgaris L., Determining the Qualitative Chemical Composition of Its Ethyl Acetate Extract Using High-Resolution Liquid Chromatography Coupled with Mass Spectrometry. International Journal of Plant Biology. 2025; 16(1):37. https://doi.org/10.3390/ijpb16010037
Chicago/Turabian StyleHernández, Giselle, Yoania Ríos, Trina H. García, Yusset Louis, Iraida Spengler, and Yarelis Ortiz. 2025. "Rhizobium sp. as a Growth Inducer of Phaseolus vulgaris L., Determining the Qualitative Chemical Composition of Its Ethyl Acetate Extract Using High-Resolution Liquid Chromatography Coupled with Mass Spectrometry" International Journal of Plant Biology 16, no. 1: 37. https://doi.org/10.3390/ijpb16010037
APA StyleHernández, G., Ríos, Y., García, T. H., Louis, Y., Spengler, I., & Ortiz, Y. (2025). Rhizobium sp. as a Growth Inducer of Phaseolus vulgaris L., Determining the Qualitative Chemical Composition of Its Ethyl Acetate Extract Using High-Resolution Liquid Chromatography Coupled with Mass Spectrometry. International Journal of Plant Biology, 16(1), 37. https://doi.org/10.3390/ijpb16010037