Nitrate Reductase and Glutamine Synthetase Enzyme Activities and Chlorophyll in Sorghum Leaves (Sorghum bicolor) in Response to Organic Fertilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Nitrate Reductase Activity (NR)
2.3. Determination of Glutamine Synthetase Activity (GS)
2.4. Determination of Chlorophyll a and b
2.5. Statistical Analysis
3. Results
3.1. Determination of NR Activity
3.2. Determination of GS Activity
3.3. Determination of Chlorophyll a and b
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikuze, E.; Cromwell, S.; Ayayee, P.; Louis, J. Influence of microbes in mediating sorghum resistance to sugarcane aphids. Diversity 2024, 16, 85. [Google Scholar] [CrossRef]
- Liang, G.; Hua, Y.; Chen, H.; Luo, J.; Xiang, H.; Song, H.; Zhang, Z. Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napus. Crop J. 2023, 11, 119–131. [Google Scholar] [CrossRef]
- Carrasco, N.; Zamora, M.; Melin, A. Manual de Sorgo, 1st ed.; Instituto Nacional de Tecnología Agropecuaria, Ediciones INTA: Buenos Aires, Argentina, 2011; p. 110. [Google Scholar]
- Hussain, S.; Khaliq, A.; Noor, M.; Tanveer, M.; Hussain, H.; Hussain, S.; Shah, T.; Mehmood, T. Metal toxicity and nitrogen metabolism in plants: An Overview. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R., Pathan, S., Cecchereni, M., Eds.; Springer: Singapore, 2019; pp. 221–248. [Google Scholar] [CrossRef]
- Mandal, R.; Dutta, G. From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sens. Int. 2020, 1, 100058. [Google Scholar] [CrossRef]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous fertilizers: Impact on environment sustainable, mitigation strategies, and challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Papamichael, I.; Voukkali, I.; Pérez, A.; Almendro, M.; Navarro-Pedreño, J.; Zorpas, A.; Gómez, I. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef]
- Sedlar, O.; Balík, J.; Cerný, J.; Kulhánek, M.; Smatanová, M. Long-term application of organic fertilizers in relation to soil organic matter quality. Agronomy 2023, 13, 175. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S.; Sainger, M.; Sainger, P.; Barnawal, D. Eco-friendly nitrogen fertilizers for sustainable agriculture. In Adaptative Soil Management: From Theory to Practices; Rakshit, A., Abhilash, P., Singh, H., Ghosh, S., Eds.; Springer: Singapore, 2017; pp. 227–246. [Google Scholar] [CrossRef]
- Shi, W.; Zhao, H.; Chen, Y.; Wang, J.; Han, B.; Li, C.; Lu, J.; Zhang, L. Organic manure rather than phosphorus fertilization primarily determined asymbiotic nitrogen fixation rate and the stability of diazotrophic community in an upland red soil. Agric. Ecosyst. Environ. 2021, 319, 107535. [Google Scholar] [CrossRef]
- Ikyo, B.; Enenche, D.; Omotosho, S.; Ofeozo, M.; Rotimi, T. Spectroscopic analysis of the effect of organic and inorganic fertilizers on the chlorophylls pigment in amaranth and jute mallow vegetables. Nig. Ann. Pure Appl. Sci. 2020, 3, 115–121. [Google Scholar] [CrossRef]
- Cevheri, C.; Sakin, E.; Ramazanoglu, E. Effects of different fertilizers on some soil enzymes activity and chlorophyll contents of two cotton (G. hirsutum L.) varieties grown in a saline and non-saline soil. J. Plant Nutr. 2021, 45, 95–106. [Google Scholar] [CrossRef]
- Jaworski, E. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971, 43, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- O’neal, D.; Joy, K. Glutamine synthetase of pea leaves I. purification, stabilization, and pH optima. Arch. Biochem. Biophys. 1973, 159, 113–122. [Google Scholar] [CrossRef]
- Purbajanti, E.; Slamet, W.; Fuskhah, E. Nitrate reductase, chlorophyll content and antioxidant in okra (Abelmoschus esculentus Moench) under organic fertilizer. J. Appl. Hortic. 2019, 21, 213–217. [Google Scholar] [CrossRef]
- Purbajanti, E.; Slamet, W.; Fuskhah, E.; Rosyida, R. Effects of organic and inorganic fertilizers on growth, activity of nitrate reductase and chlorophyll contents of peanuts (Arachis hypogaea L.). IOP Conf. Ser. Earth Environ. Sci. 2019, 250, 012048. [Google Scholar] [CrossRef]
- Reis, A.; Favarin, J.; Gallo, L.; Malavolta, E.; Moraes, M.; Junior, J. Nitrate reductase and glutamine synthetase activity in coffee leaves during fruit development. Rev. Bras. Cienc. Solo 2009, 33, 315–324. [Google Scholar] [CrossRef]
- Kaur, A.; Bedi, S.; Kumar, M. Physiological basis of nitrogen use efficiency at variable nitrogen application rates in maize. Agric. Res. J. 2019, 56, 40–48. [Google Scholar] [CrossRef]
- Xiong, H.; Ma, H.; Hu, B.; Zhao, H.; Wang, J.; Rennenberg, H.; Shi, X. Nitrogen fertilization stimulates nitrogen assimilation and modifies nitrogen partitioning in the spring shoot leaves of citrus (Citrus reticulata Blanco) trees. J. Plant Physiol. 2021, 267, 153556. [Google Scholar] [CrossRef]
- Chen, H.; Huang, L. Effect of nitrogen fertilizer application rate on nitrate reductase activity in maize. Appl. Ecol. Env. Res. 2020, 18, 2879–2894. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Chen, G.; Zou, G.; Song, X.; Liu, F. Runoff nitrogen (N) losses and related metabolism enzyme activities in paddy field under different nitrogen fertilizer levels. Environ. Sci. Pollut. Res. 2018, 25, 27583–27593. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Lobato, A.; Costa, R.; Maia, W.; Santos, B.; Alves, G.; Brinez, B.; Neves, H.; Santos, M.; Cruz, F. Nitrogen compounds and enzyme activities in sorghum induced to water deficit during three stages. Plant Soil Environ. 2009, 55, 238–244. [Google Scholar] [CrossRef]
- Da Silva, A.; Borges, V.; Guimaraes, L.; De Almeida, D.; Martins, M.; Zuffo, C.; Rodrigues, S.; Lucena, I. Nitrate reductase activity in the different phenophases of “palmer” mango cultivated in the semiarid. J. Appl. Bot. Food Qual. 2021, 94, 192–198. [Google Scholar] [CrossRef]
- Argentel, L.; Garatuza, J.; Arredondo, T.; Yépez, E. Effects of experimental warming on peroxide, nitrate reductase and glutamine synthetase activities in wheat. Agron. Res. 2019, 17, 22–32. [Google Scholar] [CrossRef]
- Rehman, M.; Yang, M.; Fahad, S.; Salem, M.; Liu, L.; Liu, F.; Deng, G. Morpho-physiological traits, antioxidant capacity and nitrogen metabolism in Boehmeria nivea L. under nitrogen fertilizer. Agron. J. 2020, 112, 2988–2997. [Google Scholar] [CrossRef]
- Kirova, E.; Geneva, M.; Kostadinov, K.; Filipov, S. Improving yield and quality-related physiological characteristics of lettuce by integrated inorganic and organic fertilizers management. Saudi J. Biol. Sci. 2022, 27, 797–804. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Akhtar, K.; Wei, S.; Fahad, S.; Khan, R.; Jiang, L. Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in paddy field. Sci. Rep. 2021, 11, 10048. [Google Scholar] [CrossRef]
- Singh, P.; Tomar, R.; Kumar, K.; Kumar, B.; Rakshit, S.; Singh, I. Morpho-physiological and biochemical characterization of maize genotypes under nitrogen stress conditions. Indian J. Genet. Pl. Br. 2021, 81, 255–265. [Google Scholar] [CrossRef]
- Neto, A.; Favarin, J.; dos Reis, A.; Tezotto, T.; Munhoz, E.; Lavres, J.; Gallo, L. Nitrogen metabolism in coffee plants in response to nitrogen supply by fertigation. Theor. Exp. Plant Phys. 2015, 27, 41–50. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef]
- Guo, N.; Gu, M.; Hu, J.; Qu, H.; Xu, G. Rice OsLHT1 functions in leaf-to-panicle nitrogen allocation for grain yield and quality. Front. Plant Sci. 2020, 11, 1150. [Google Scholar] [CrossRef]
- Mendoza-Tafolla, R.; Juarez-Lopez, P.; Ontiveros-Capurata, R.; Sandoval-Villa, M.; Alia-Tejacal, I.; Alejo-Santiago, G. Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. Not. Bot. Horti Agrobo. Cluj-Napoca 2019, 47, 751–756. [Google Scholar] [CrossRef]
- Chamle, D.; Raut, D. Evaluation of organic and inorganic fertilizers on chlorophyll content, leaf area and yield of maize. EPRA J. Agric. Rural. Econ. Res. 2021, 10, 15–17. [Google Scholar]
- Ahmad, I.; Zhu, G.; Zhou, G.; Song, X.; Ibrahim, M.; Salih, G. Effect of N on growth, antioxidant capacity, and chlorophyll content of sorghum. Agronomy 2022, 12, 501. [Google Scholar] [CrossRef]
- Biswal, A.; Pattanayak, G.; Pandey, S.; Leelavathi, S.; Reddy, V.; Govindjee, G.; Tripathy, B. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol. 2012, 159, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Cevahir, G.; Yentür, S.; Yazgan, M.; Ünal, M.; Yilmazer, N. Peroxidase activity in relation to anthocyanin and chlorophyll content in juvenile and adult leaves of “MINI-STAR” Gazania splendens. Pak. J. Bot. 2004, 36, 603–609. [Google Scholar]
- Tranaviciene, T.; Siksnianiene, J.; Urbonaviciute, A.; Vaguseviciene, I.; Samuoliene, G.; Duchovskis, P.; Sliesaravicius, A. Effects of nitrogen fertilizers on wheat photosynthetic pigment and carbohydrate contents. Biologija 2007, 53, 80–84. [Google Scholar] [CrossRef]
- Padilla, F.; Peña-Fleitas, M.; Gallardo, M.; Giménez, C.; Thompson, B. Derivation of sufficiency values of chlorophyll meter to estimate cucumber nitrogen status and yield. Comput. Electron. Agric. 2017, 141, 54–64. [Google Scholar] [CrossRef]
- Souza, C.; Brant, C.; Soares, R. Chlorophyll index (SPAD) and macronutrients relation and productive performance of sorghum hybrids in different sowing dates. Aust. J. Crop Sci. 2016, 10, 546–555. [Google Scholar] [CrossRef]
- Argenta, G.; Regis, P.; Sangoi, L. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Cienc. Rural. 2004, 34, 1379–1387. [Google Scholar] [CrossRef]
- Kraj, W. Chlorophyll degradation and the activity of chlorophyllase and Mg-dechelatase during leaf senescence in Fagus sylvatica. Dendrobiology 2015, 74, 43–57. [Google Scholar] [CrossRef]
Treatments | Description |
---|---|
T1 | Soil (4.4% organic matter; nitrogen 100 ppm; phosphorus 0.80 ppm; potassium 5.50 ppm; and pH 7.4) |
T2 | 100 kg ha−1 N (chicken manure) + soil |
T3 | 200 kg ha−1 N (chicken manure) + soil |
T4 | 100 kg ha−1 N (ammonium sulfate) + soil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieves-Silva, E.; Sandoval-Castro, E.; Delgado-Alvarado, A.; Castañeda-Antonio, M.D.; Huerta-De la Peña, A. Nitrate Reductase and Glutamine Synthetase Enzyme Activities and Chlorophyll in Sorghum Leaves (Sorghum bicolor) in Response to Organic Fertilization. Int. J. Plant Biol. 2024, 15, 827-836. https://doi.org/10.3390/ijpb15030059
Nieves-Silva E, Sandoval-Castro E, Delgado-Alvarado A, Castañeda-Antonio MD, Huerta-De la Peña A. Nitrate Reductase and Glutamine Synthetase Enzyme Activities and Chlorophyll in Sorghum Leaves (Sorghum bicolor) in Response to Organic Fertilization. International Journal of Plant Biology. 2024; 15(3):827-836. https://doi.org/10.3390/ijpb15030059
Chicago/Turabian StyleNieves-Silva, Ericka, Engelberto Sandoval-Castro, Adriana Delgado-Alvarado, María D. Castañeda-Antonio, and Arturo Huerta-De la Peña. 2024. "Nitrate Reductase and Glutamine Synthetase Enzyme Activities and Chlorophyll in Sorghum Leaves (Sorghum bicolor) in Response to Organic Fertilization" International Journal of Plant Biology 15, no. 3: 827-836. https://doi.org/10.3390/ijpb15030059
APA StyleNieves-Silva, E., Sandoval-Castro, E., Delgado-Alvarado, A., Castañeda-Antonio, M. D., & Huerta-De la Peña, A. (2024). Nitrate Reductase and Glutamine Synthetase Enzyme Activities and Chlorophyll in Sorghum Leaves (Sorghum bicolor) in Response to Organic Fertilization. International Journal of Plant Biology, 15(3), 827-836. https://doi.org/10.3390/ijpb15030059