Phycoremediation of Potato Industry Wastewater for Nutrient Recovery, Pollution Reduction, and Biofertilizer Production for Greenhouse Cultivation of Lettuce and Celery in Sandy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Industry Wastewater (PIW): Collection, Primary Treatment, and Analysis
2.2. Isolation, Purification, Characterization, and Molecular Identification of Cyanobacterial Strains
2.3. Preparation of Cyanobacterial Inocula and Optimization of Growth Conditions
2.4. Formulation of Cyanobacteria–PIW-Based Fertilizers
2.5. Soil Sample Collection and Comprehensive Analysis
2.6. Celery and Lettuce Transplanting
T1 = 100% NPK | T2 = 50% NPK |
T3 = 25% NPK | T4 = 75% NPK+ Spi-PIW |
T5 = 50% NPK+ Spi-PIW | T6 = 25% NPK + Spi-PIW |
T7= 75% NPK + Cyano-PIW | T8 = 50% NPK +Cyano-PIW |
T9 = 25% NPK + Cyano-PIW | T10 = Control without any fertilizers |
2.7. Statistical Analysis
3. Results
3.1. Assessment of Cyanobacterial Growth Performance in Potato Industry Wastewater (PIW) versus Standard Synthetic Media
3.2. Characterization of Cyanobacteria–PIW-Based Biofertilizers
3.3. Effect of Cyanobacteria–PIW-Based Biofertilizers on Celery and Lettuce Growth Parameters and Chlorophyll Content
3.4. Impact of Cyanobacteria–PIW Biofertilizers on Macro- and Micronutrient Contents in Celery and Lettuce
3.5. Impact of Cyanobacteria–PIW Biofertilizers on Some Chemical Properties of Sandy Soil following Celery and Lettuce Harvesting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kot, A.M.; Pobiega, K.; Piwowarek, K.; Kieliszek, M.; Błażejak, S.; Gniewosz, M.; Lipińska, E. Biotechnological Methods of Management and Utilization of Potato Industry Waste—A Review. Potato Res. 2020, 63, 431–447. [Google Scholar] [CrossRef]
- Rabia, A.H.B.; Mohamed, A.A.; Abdelaty, E.F.; Shahin-Sara, F.; Yacout Dalia, M.M. Investigating Adaptation Strategies Developed by Potato Farmers to Cope with Climate Change Impacts in Egypt. Alex. Sci. Exch. J. 2021, 42, 871–881. [Google Scholar] [CrossRef]
- Bzducha-Wróbel, A.; Błażejak, S.; Molenda, M.; Reczek, L. Biosynthesis of β (1,3)/(1,6)-glucans of cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol. Eur. Food Res. Technol. 2015, 240, 1023–1034. [Google Scholar] [CrossRef]
- Miedzianka, J.; Pęksa, A.; Pokora, M.; Rytel, E.; Tajner-Czopek, A.; Kita, A. Improving the properties of fodder potato protein concentrate by enzymatic hydrolysis. Food Chem. 2014, 159, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.K.; Hung, Y.-T.; Lo, H.H.; Yapijakis, C. (Eds.) Handbook of Industrial and Hazardous Wastes Treatment, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Kowalczewski, P.; Celka, K.; Białas, W.; Lewandowicz, G. Antioxidant activity of potato juice. Acta Sci. Pol. Technol. Aliment. 2012, 11, 175–181. [Google Scholar] [PubMed]
- Hussain, F.; Shah, S.Z.; Ahmad, H.; Abubshait, S.A.; Abubshait, H.A.; Laref, A.; Manikandan, A.; Kusuma, H.S.; Iqbal, M. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and biofertilizer production: A review. Renew. Sustain. Energy Rev. 2021, 137, 110603. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: A circular bioeconomy approach. Environ. Sci. Pollut. Res. 2021, 28, 58837–58856. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.S.; El-Hassanin, A.S.; Rashad, S.; El-Chaghaby, G.A. Microalgae growth in effluents from olive oil industry for biomass production and decreasing phenolics content of wastewater. Egypt. J. Aquat. Biol. Fish. 2019, 23, 359–365. [Google Scholar] [CrossRef]
- Hung, Y.T.; Lo, H.H.; Awad, A.; Salman, H. Potato wastewater treatment. In Handbook of Industrial and Hazardous Wastes Treatment; CRC Press: Boca Raton, FL, USA, 2004; pp. 894–951. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005; p. 1220. [Google Scholar]
- Rippka, R.; Deruelles, J.; Waterburg, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteira. J. Gen. Microbiol. 1979, 111, 1–16. [Google Scholar]
- Zarrouk, C. Contribution á l’étuded’unecyanophycée. Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthése de Spirulina maxima (Setch. Et Gardner) Geitler. Ph.D. Thesis, University of Paris, Paris, France, 1966. [Google Scholar]
- Ferris, M.J.; Hirsch, C.F. Method for isolation and purification of cyanobacteria. Appl. Environ. Microbiol. 1991, 57, 1448–1452. [Google Scholar] [CrossRef] [PubMed]
- Roger, P.A.; Kulasooriya, S.A. Blue Green Algae and Rice; The International Rice Research Institute: Los Banos, Philippines, 1980. [Google Scholar]
- Garcia-Pichel, F.; Sherry, N.D.; Castenholz, R.W. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 1992, 56, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Desikachary, T.V. Cyanophyta. In ICAR Monograph on Algae; ICAR: New Delhi, India, 1959. [Google Scholar]
- Herdman, M.; Castenholz, R.W.; Iteman, I.; Waterbury, J.B.; Rippka, R. The Cyanobacteria: Subsection 1 (Formerly Chroococcales Wettstein 1924, emend. Rippka, Deruelles, Waterbury. Herdman and Stanier 1979). In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Boone, D.R., Castenholz, W.R., Eds.; Springer: New York, NY, USA, 2001; pp. 493–514. [Google Scholar]
- Senousy, H.H.; Hamoud, Y.A.; Abu-Elsaoud, A.M.; Mahmoud Al zoubi, O.; Abdelbaky, N.F.; Zia-ur-Rehman, M.; Usman, M.; Soliman, M.H. Algal Bio-Stimulants Enhance Salt Tolerance in Common Bean: Dissecting Morphological, Physiological, and Genetic Mechanisms for Stress Adaptation. Plants 2023, 12, 3714. [Google Scholar] [CrossRef] [PubMed]
- Kamennaya, N.A.; Ahn, S.; Park, H.; Bartal, R.; Sasaki, K.A.; Holman, H.Y.; Jansson, C. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production. Metab. Eng. 2015, 29, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Vonshak, A.; Richmond, A. Mass production of the blue-green algae Spirulina: An overview. Biomass 1988, 15, 233–247. [Google Scholar] [CrossRef]
- Piper, C.S. Soil and Plant Analysis; Interscience Publishers, Inc.: New York, NY, USA, 1950. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils; Agriculture Handbook No. 60; US Department of Agriculture: Washington, DC, USA, 1954.
- AOAC. Methods of Soil Analysis, 12th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Jia, M.; Li, D.; Colombo, R.; Wang, Y.; Wang, X.; Cheng, T.; Zhu, Y.; Yao, X.; Xu, C.; Ouer, G.; et al. Quantifying Chlorophyll Fluorescence Parameters from Hyperspectral Reflectance at the Leaf Scale under Various Nitrogen Treatment Regimes in Winter Wheat. Remote Sens. 2019, 11, 2838. [Google Scholar] [CrossRef]
- SPSS. Tutorial for SPSS-13.0 Software, version 13.0; SPSS Inc.: Chicago, IL, USA, 2004. [Google Scholar]
- Balasooriya, B.L.W.K. Culture Collection of Cyanobacteria and Microalgae at Department of Biotechnology, Wayamba University of Sri Lanka; Neth Win Printers: Kandy, Sri Lanka, 2019; ISBN 978-624-5327-00-3. [Google Scholar]
- Abdel-Hamid, M.S.; Hamouda, R.A.E.-F.; El-Aal, H.A.; Badawy, G.A. Distinctive Application of the Consortium of Chlorella vulgaris and Anabaena oryzae toward Different Planting Dates and Climate Change on Jerusalem Artichoke Yield. J. Plant Growth Regul. 2022, 41, 479–493. [Google Scholar] [CrossRef]
- Ende, S.S.W.; Noke, A. Heterotrophic microalgae production on food waste and by-products. J. Appl. Phycol. 2019, 31, 1565–1571. [Google Scholar] [CrossRef]
- Lois-Milevicich, J.; Casá, N.; Alvarez, P.; Mateucci, R.; Busto, V.; de Escalada, M. Chlorella vulgaris biomass production using brewery wastewater with high chemical oxygen demand. J. Appl. Phycol. 2020, 32, 2773–2783. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Mohamadnia, S.; Tavakoli, O.; Faramarzi, M.A. Production of fucoxanthin from the microalga Tisochrysis lutea in the bubble column photobioreactor applying mass transfer coefcient. J. Biotechnol. 2022, 348, 47–54. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Don, C.D.Y.A.; Babel, S. Effects of organic loading on bioelectricity and micro-algal biomass production in microbial fuel cells using synthetic wastewater. J. Water Process Eng. 2021, 39, 101699. [Google Scholar]
- Johnson, T.J.; Zahler, J.D.; Baldwin, E.L.; Zhou, R.; Gibbons, W.R. Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals. J. Microbiol. Methods 2016, 126, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; O’Fallon, J.V.; Chen, S. Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol. 2011, 29, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Constraints to commercialization of algal fuels. J. Biotechnol. 2013, 167, 201–214. [Google Scholar] [CrossRef] [PubMed]
- De Farias Silva, C.; Gris, B.; Sforza, E.; La Rocca, N.; Bertucco, A. Effects of Sodium Bicarbonate on Biomass and Carbohydrate Production in Synechococcus PCC 7002. Chem. Eng. Trans. 2016, 49, 241–246. [Google Scholar]
- Hwang, J.-H.; Church, J.; Lee, S.-J.; Park, J.; Lee, W.H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 2016, 33, 882–897. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Shalaby, E.A.; Mahmoud, G.I. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production. Not. Sci. Biol. 2012, 4, 56–65. [Google Scholar] [CrossRef]
- Brar, A.; Kumar, M.; Pareek, N. Comparative appraisal of biomass production, remediation, and bioenergy generation potential of microalgae in dairy wastewater. Front. Microbiol. 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Zayadan, B.K.; Sadvakasova, A.K.; Usserbayeva, A.A.; Bolatkhan, K.; Baizhigitova, A.M.; Akmukhanova, N.R.; Sidorov, R.A.; Sinetova, M.A.; Los, D.A. Waste-free technology of wastewater treatment to obtain microalgal biomass for biodiesel production. Int. J. Hydrogen Energy 2017, 42, 8586–8591. [Google Scholar] [CrossRef]
- Moustafa, S.; El Shimi, H. Phycoremediation of Olive Wastewater for Sustainable Production. Int. J. ChemTech Res. 2016, 9, 567–579. [Google Scholar]
- Paraskeva, P.; Diamadopoulos, E. Technologies for Olive Mill Wastewater (OMW) Treatment: A Review. J. Chem. Technol. Biotechnol. 2006, 81, 1475–1485. [Google Scholar] [CrossRef]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- El-Nahhal, Y.; Hamms, S. Effects of Bromacil, malathion and thiabendazole on Cyanobacteria mat growth. Int. J. Appl. Sci. Res. Rev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [PubMed]
- Shruthi, M.S.; Rajashekhar, M. Effect of salinity and growth phase on the biochemical composition of two diatom species isolated from estuarine waters near Mangalore, West Coast of India. Int. J. Adv. Life Sci. 2014, 7, 135–142. [Google Scholar]
- Rajaniemi, P.; Hrouzek, P.; Kastovska, K.; Willame, R.; Rantala, A.; Hoffmann, L.; Komarek, J.; Sivonen, K. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 2005, 55, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Wuang, S.C.; Khin, M.C.; Chua, P.Q.D.; Luo, Y.D. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016, 15, 59–64. [Google Scholar] [CrossRef]
- Shurin, J.B.; Abbott, R.L.; Deal, M.S.; Kwan, G.T.; Litchman, E.; McBride, R.C.; Mandal, S.; Smith, V.H. Industrial-strength ecology: Trade-offs and opportunities in algal biofuel production. Ecol. Lett. 2013, 16, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Godwin, C.M.; Hietala, D.C.; Lashaway, A.R.; Narwani, A.; Savage, P.E.; Cardinale, B.J. Ecological Stoichiometry Meets Ecological Engineering: Using Polycultures to Enhance the Multifunctionality of Algal Biocrude Systems. Environ. Sci. Technol. 2017, 51, 11450–11458. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.A.S.; Doig, L.; Peyton, B.M.; Gerlach, R.; Fields, M.W. Contributions of the microbial community to algal biomass and biofuel productivity in a wastewater treatment lagoon system. Algal Res. 2019, 39, 101461. [Google Scholar] [CrossRef]
- Mhedhbi, E.; Khelifi, N.; Foladori, P.; Smaali, I. Real-Time Behavior of a Microalgae–Bacteria Consortium Treating Wastewater in a Sequencing Batch Reactor in Response to Feeding Time and Agitation Mode. Water 2020, 12, 1893. [Google Scholar] [CrossRef]
- Kumar, D.; Nikhil, K. Effect of FYM, NPK and Algal fertilizers on the Growth and Biomass of Vetiver Grass [Vetiveriazizanioides L. Nass]. Int. J. Eng. Appl. Sci. 2016, 3, 257695. [Google Scholar]
- Jaiswal, A.; Das, K.; Koli, D.K.; Pabbi, S. Characterization of cyanobacteria for IAA and siderophore production and their effect on rice seed germination. Int. J. Curr. Microbiol. Appl. Sci. 2018, 5, 212–222. [Google Scholar]
- Aly, M.H.A.; Abd El-All, A.A.M.; Mostafa, S.S.M. Enhancement of sugar beet seed germination, plant growth performance and biochemical compounds as contributed by algal extracellular products. J. Agric. Sci., Mansoura Univ. 2008, 33, 8429–8448. [Google Scholar]
- Burjus, S.; Jawad, A.; Al-Ani, N. Effect of Two Species of Cyanobacteria as Biofertilizers on Characteristics and Yield of Chickpea Plant. Iraqi J. Sci. 2014, 55, 685–696. [Google Scholar]
- Ibraheem, I.B.M.; Abdel-Raouf, N.; Hammouda, O.; AbdelWahab, N. The potential for using culture filtrate of chroococcus minutes as fungicial agent against phytopathogenic Pythium sp. Egypt. J. Phycol. 2008, 9, 99–114. [Google Scholar] [CrossRef]
- Osman, M.E.H.; El-Sheekh, M.M.; El-Naggar, A.H.; Gheda, S.F. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol. Fertil. Soils 2010, 46, 861–875. [Google Scholar] [CrossRef]
- Mahmoud, Y.I.; Mostafa, S.S.M.; Mohamed, F.M. Comparative Evaluation of Biological Treatments and Mineral NPK on Rice Productivity in Alkaline-Saline Soil. Middle East J. Agric. Res. 2015, 4, 735–744. [Google Scholar]
- Abuye, F.; Achamo, B. Potential Use of Cyanobacterial Bio-fertilizer on Growth of Tomato Yield Components and Nutritional Quality on Grown Soils Contrasting pH. J. Biol. 2016, 6, 54–62. [Google Scholar]
- Hegazi, A.Z.; Mostafa, S.S.M.; Ahmed, H.M.I. Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization. Nat. Sci. 2010, 88, 183–194. [Google Scholar]
- Menamo, M.; Wolde, Z. Effect of cyanobacteria application as biofertilizer on growth, yield and yield components of Romaine lettuce (Lactuca sativa L.) on soil of Ethiopia. Am. Sci. Res. J. Eng. Technol. Sci. 2013, 4, 50–78. [Google Scholar]
- Rashad, S.; El-Hassanin, A.S.; Mostafa, S.S.M.; El-Chaghaby, G.A. Cyanobacteria cultivation using olive milling wastewater for bio-fertilization of celery plant. Glob. J. Environ. Sci. Manag. 2019, 5, 167–174. [Google Scholar]
- Mostafa, S.; El-Taweel, A.A.; Aly, A.A. Use Efficiency of Cyanobacteria and Olive Vegetation Water (Cyano/Ovw) Biofertilizer for Olive Trees under Different Mineral NPK Levels. Egypt. J. Hort. 2016, 43, 77–107. [Google Scholar]
- Bhagat, R.; Gupta, S.; Singh, D.P.; Singh, D.; Kumar, P. Cyanobacteria: A potential biofertilizer for sustainable agriculture. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer: Singapore, 2020; pp. 275–296. [Google Scholar]
- Abiven, S.; Menasseri, S.; Chenu, C.; Torn, M.S. Identifying mechanisms of soil organic matter dynamics: A critical review using compartmental analysis. Soil. Biol. Biochem. 2009, 41, 1613–1629. [Google Scholar]
Ser. | Microalgal Strains | NCBI * Accession No. | Family | pH | Optical Density OD | Total Chlorophyll (mg·L−1) | Dry Weight (g·L−1) |
---|---|---|---|---|---|---|---|
1 | Nostoc muscorum strain HSSASE1 | KT277784.1 | Nostocaceae | 7.80 | 1.00 | 4.89 | 0.740 |
2 | Spirulina platensis strain HSSASE5 | KT277788.1 | Spirulinaceae | 10.42 | 1.95 | 12.80 | 1.770 |
3 | Anabaena oryzae strain HSSASE6 | KT277789.1 | Nostocaceae | 7.00 | 0.87 | 4.48 | 0.610 |
Treatments | Strains | Growth Culture Media | Abbreviations |
---|---|---|---|
T1 | Spirulina platensis | Zarrouk medium | Spi-Z |
T2 | Anabaena oryzae | BG110 medium | Ao-BG |
T3 | Nostoc muscorum | BG110 medium | Nm-BG |
T4 | Mixed culture | BG110 medium +10 mM NaHCO3 | Cyano-Mix |
T5 | Spirulina platensis | Potato industry wastewater (PIW) + 10 mM NaHCO3 | Spi-PIW |
T6 | Anabaena oryzae | Potato industry wastewater (PIW) | Ao-PIW |
T7 | Nostoc muscorum | Potato industry wastewater (PIW) | Nm-PIW |
T8 | Mixed culture | Potato industry wastewater (PIW)+10 mM NaHCO3 | Cyano-PIW |
Coarse Sand (%) | Fin Sand (%) | Silt (%) | Clay (%) | Texture | OM (%) | OC (%) | CaCO3(%) | pH (1:2:5) | EC (dS/m) | |||||||||
40.30 | 43.50 | 11.70 | 4.50 | Sandy | 0.21 | 0.12 | 1.90 | 7.98 | 3.25 | |||||||||
Cations (meq·L−1) | Anions (meq·L−1) | CEC (meq·100 g−1 soil) | WHC % | FC % | ||||||||||||||
Ca++ | Mg++ | Na+ | K+ | HCO−3 | Cl− | SO−4 | ||||||||||||
4.30 | 2.18 | 9.34 | 0.88 | 1.13 | 7.44 | 8.13 | 3.40 | 27.00 | 17.00 | |||||||||
Available Macronutrients (%) | Micronutrients (ppm) | |||||||||||||||||
N | P | K | Fe | Mn | Zn | Cu | ||||||||||||
0.002 | 0.0004 | 0.006 | 1.17 | 0.89 | 0.58 | 0.04 |
Parameters | PIW | Synthetic Media | ||
---|---|---|---|---|
Before Sedimentation | After Sedimentation | Zarrouk | BG110 | |
pH | 6.71 | 5.03 | 10.00 | 7.5 |
EC ds·m−1 | 0.794 | 0.568 | 19.89 | 0.55 |
TSS mg·mL−1 | 12.754 | 9.121 | - | - |
mg·mL−1 | ||||
NO3-N | 270.00 | 220.00 | 484.95 | 64.00 |
NO2-N | 3.00 | 2.00 | - | - |
N | 1000.00 | 1000.00 | 1826.08 | 290.93 |
P | 30.00 | 20.00 | 89.10 | 7.00 |
K | 380.00 | 360.00 | 670.76 | 18.02 |
Ca | 414.90 | 389.00 | 10.01 | 9.71 |
Fe | 14.83 | 14.02 | 2.97 | 1.27 |
Cu | 5.31 | 5.11 | 0.02 | 0.02 |
Mn | - | - | 0.50 | 0.50 |
Zn | - | - | 0.05 | 0.05 |
Mg | 1872.13 | 1650.21 | 19.72 | 7.40 |
COD | 15142.00 | 13824 | - | - |
BOD | 4789.00 | 3681 | - | - |
Parameters | Spi-PIW | Cyano-PIW |
---|---|---|
pH | 6.80 | 6.90 |
Carbohydrates (%) | 14.60 | 24.00 |
Protein (%) | 24.50 | 27.9 |
Lipid (%) | 9.98 | 12.30 |
N (%) | 3.90 | 4.48 |
P (%) | 0.80 | 0.90 |
K (%) | 1.60 | 1.83 |
Fe (mg·L−1) | 105.70 | 116.00 |
Cu (mg·L−1) | 0.05 | 0.09 |
Mn (mg·L−1) | 19.87 | 21.90 |
Zn (mg·L−1) | 4.10 | 4.85 |
Mg (mg·L−1) | 58.60 | 64.00 |
Treatments | Plant Height (cm) | Root Height (cm) | Stem Length (cm) | Fresh Weight (g·plant−1) | Dry Weight (g·plant−1) | Number of Leaves/Plant | Chlorophyll (mg·g−1 Fresh Weight) |
---|---|---|---|---|---|---|---|
T1 | 47.66 a | 17.70 a | 30.00 a | 130.00 a | 5.18 b | 57.66 a | 2.96 a |
T2 | 45.00 b | 17.00 a | 28.00 ab | 116.70 b | 3.27 d | 54.00 bc | 2.76 bc |
T3 | 35.00 c | 13.00 bc | 22.00 cd | 107.70 c | 2.41 e | 42.33 d | 2.00 f |
T4 | 43.00 b | 18.00 a | 25.00 bc | 118.00 b | 5.00 b | 56.66 ab | 2.63 c |
T5 | 44.00 b | 18.00 a | 26.00 b | 107.30 c | 5.31 ab | 51.66 c | 2.36 d |
T6 | 35.00 c | 14.00 b | 21.00 d | 107.00 c | 4.40 c | 33.66 e | 1.86 f |
T7 | 47.66 a | 17.00 a | 30.66 a | 135.30 a | 5.71 a | 59.30 a | 2.86 ab |
T8 | 48.00 a | 17.70 a | 30.33 a | 134.00 a | 5.42 ab | 58.66 a | 2.76 bc |
T9 | 31.00 d | 12.70 bc | 18.6 de | 116.70 b | 3.51 d | 41.66 d | 2.16 e |
T10 | 28.00 e | 11.30 c | 16.00 e | 103.30 c | 2.31 e | 31.66 e | 1.66 g |
LSD 0.05 | 2.46 | 0.17 | 3.27 | 7.65 | 0.41 | 2.69 | 0.14 |
Treatments | Plant Height (cm) | Root Height (cm) | Fresh Weight (g·plant−1) | Dry Weight (g·plant−1) | Number of Leaves·Plant−1 | Chlorophyll (mg·g−1 Fresh Weight) |
---|---|---|---|---|---|---|
T1 | 44.00 a | 12.66 a | 285.00 a | 12.66 ab | 17.33 a | 3.63 a |
T2 | 41.70 bc | 10.00 cd | 261.00 c | 12.33 ab | 13.33 c | 3.23 b |
T3 | 31.33 e | 7.33 e | 213.33 f | 9.66 bc | 11.33 de | 2.76 cd |
T4 | 40.33 c | 9.33 d | 262.33 c | 12.66 ab | 13.00 c | 3.13 b |
T5 | 37.33 d | 7.66 e | 250.00 d | 10.33 bc | 11.66 d | 2.80 c |
T6 | 29.00 f | 7.33 e | 234.00 e | 7.66 cd | 10.66 e | 2.63 d |
T7 | 42.70 ab | 11.66 ab | 289.33 a | 15.33 a | 17.00a | 3.60 a |
T8 | 41.66 bc | 10.66 bc | 277.66 b | 14.66 a | 14.66b | 3.20 b |
T9 | 32.33 e | 8.00 e | 235.00 e | 11.00 bc | 12.66c | 2.90 c |
T10 | 23.00 g | 5.66 f | 176.60 g | 6.00 d | 9.33f | 1.76 e |
LSD 0.05 | 1.55 | 1.31 | 6.67 | 3.30 | 1.87 | 0.14 |
Treatment | N% | P% | K% | |||
---|---|---|---|---|---|---|
Leaves | Leaves | Leaves | Roots | Leaves | Roots | |
T1 | 3.13 a | 1.23 a | 0.57 a | 0.37 a | 7.07 a | 2.83 a |
T2 | 2.76 c | 0.86 c | 0.37 c | 0.27 d | 6.73 b | 2.53 c |
T3 | 1.73 g | 0.63 d | 0.27 d | 0.22 e | 5.30 f | 2.03 e |
T4 | 2.73 c | 1.06 b | 0.47 b | 0.33 b | 6.47 c | 2.70 ab |
T5 | 2.30 e | 0.85 c | 0.37 c | 0.29 c | 5.93 d | 2.43 c |
T6 | 1.87 f | 0.56 de | 0.26 d | 0.27 d | 3.93 g | 2.10 e |
T7 | 3.06 ab | 1.16 ab | 0.50 ab | 0.36 a | 6.90 ab | 2.76 a |
T8 | 3.00 b | 1.06 b | 0.43 bc | 0.35 ab | 6.70 b | 2.56 bc |
T9 | 2.50 d | 0.86 c | 0.27 d | 0.30 c | 5.57 e | 2.26 d |
T10 | 1.67 g | 0.50 e | 0.20 d | 0.19 f | 2.97 h | 1.00 f |
LSD 0.05 | 0.11 | 0.10 | 0.08 | 0.02 | 0.22 | 0.13 |
Treatment | N% | P% | K% | |||
---|---|---|---|---|---|---|
Leaves | Leaves | Leaves | Roots | Leaves | Roots | |
T1 | 3.80 a | 1.08 a | 0.60 a | 0.34 a | 6.30 a | 2.83 a |
T2 | 3.37 c | 0.81 c | 0.57 b | 0.30 c | 5.97 b | 2.60 b |
T3 | 2.97 e | 0.65 d | 0.47 f | 0.27 d | 5.27 e | 2.40 d |
T4 | 3.53 b | 0.93 b | 0.54 c | 0.30 c | 6.00 b | 2.57 bc |
T5 | 3.27 cd | 0.83 bc | 0.52 d | 0.28 d | 5.77 c | 2.47 bcd |
T6 | 2.90 e | 0.73 cd | 0.49 e | 0.28 d | 5.47 d | 2.37 d |
T7 | 3.77 a | 1.14 a | 0.59 a | 0.33 ab | 6.27 a | 2.83 a |
T8 | 3.70 a | 1.13 a | 0.58 ab | 0.32 b | 6.10 b | 2.57 bc |
T9 | 3.20 d | 0.93 b | 0.56 b | 0.30 c | 5.97 b | 2.43 cd |
T10 | 2.43 f | 0.47 e | 0.29 g | 0.22 e | 3.06 f | 1.30 e |
LSD 0.05 | 0.131 | 0.106 | 0.017 | 0.014 | 0.156 | 0.124 |
Treatment | Mn | Fe | Zn | Cu | ||||
---|---|---|---|---|---|---|---|---|
Leaves | Roots | Leaves | Roots | Leaves | Roots | Leaves | Roots | |
T1 | 152.33 a | 238.30 a | 250.66 a | 1294.00 a | 127.66 a | 150.33 a | 48.33 a | 66.33 a |
T2 | 144.00 c | 230.66 c | 241.66 b | 1268.33 c | 122.00 b | 144.33 cd | 42.66 c | 63.00 b |
T3 | 125.67 e | 220.33 e | 231.66 c | 1261.66 c | 104.33 d | 135.00 f | 31.00 f | 51.66 e |
T4 | 144.30 c | 232.00 bc | 242.66 b | 1281.66 b | 125.66 a | 143.66 d | 45.00 b | 63.66 b |
T5 | 135.67 d | 226.36 d | 235.66 c | 1261.66 c | 119.66 b | 138.66 e | 33.30 d | 61.00 c |
T6 | 122.67 f | 225.66 d | 210.00 d | 1251.66 d | 105.33 d | 128.33 g | 29.66 f | 58.33 d |
T7 | 149.67 ab | 237.00 a | 249.00 a | 1291.66 a | 128.66 a | 148.00 b | 48.30 a | 65.66 a |
T8 | 148.33 b | 236.00 ab | 246.60 ab | 1286.66 ab | 126.66 a | 146.00 bc | 48.30 a | 64.66 ab |
T9 | 134.00 d | 228.00 cd | 236.33 c | 1281.66 b | 114.00 c | 140.00 e | 36.33 d | 59.33 cd |
T10 | 86.33 g | 122.33 f | 149.66 e | 1112.00 e | 34.33 e | 86.33 h | 23.00 g | 47.66 f |
LSD 0.05 | 3.23 | 4.1 | 5.12 | 7.15 | 2.98 | 2.08 | 2.3 | 1.67 |
Treatment | Mn | Fe | Zn | Cu | ||||
---|---|---|---|---|---|---|---|---|
Leaves | Roots | Leaves | Roots | Leaves | Roots | Leaves | Roots | |
T1 | 143.33 a | 216.67 abc | 252.00 ab | 1326.67 a | 128.33 a | 145.00 bc | 19.33 a | 47.66 a |
T2 | 137.67 b | 196.67 d | 246.33 c | 1275.00 bc | 123.00 c | 136.66 de | 17.00 b | 41.33 bc |
T3 | 129.00 e | 190.00 e | 239.67 d | 1256.67 c | 111.33 e | 131.33 e | 14.30 ef | 31.66 f |
T4 | 141.33 a | 216.67 abc | 241.67 d | 1265.00 bc | 125.67 c | 141.66 cd | 16.7 bc | 39.33 bcd |
T5 | 135.00 c | 215.00 bc | 241.67 d | 1258.33 c | 123.33 c | 136.66 de | 15.00 def | 36.67 cde |
T6 | 132.00 d | 213.33 bc | 238.67 d | 1256.60 c | 121.00 d | 135.00 e | 13.70 f | 36.00 def |
T7 | 143.33 a | 221.67 a | 252.30 a | 1296.67 ab | 128.33 a | 151.00 a | 18.66 a | 44.00 ab |
T8 | 142.33 a | 220.00 ab | 251.00 ab | 1286.67 bc | 127.67 a | 148.33 ab | 16.00 bcd | 39.33 bcd |
T9 | 135.33 c | 214.00 bc | 248.33 bc | 1270.00 bc | 123.67 c | 145.00 bc | 15.30 cde | 33.67 ef |
T10 | 89.00 f | 125.00 f | 146.67 e | 1111.67 d | 51.67 f | 103.33 f | 10.33 g | 9.66 g |
LSD 0.05 | 2.28 | 5.891 | 3.59 | 3.59 | 1.99 | 5.83 | 1.355 | 4.46 |
Treatments | Celery | Lettuce | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | EC dS·m−1 | CECmeq·100 g−1 Soil | * SOM g·kg−1 Soil | ** SOC g·kg−1 Soil | pH | EC dS·m−1 | CECmeq·100 g−1 Soil | * SOM g·kg−1 Soil | ** SOC g·kg−1 Soil | |
T1 | 7.86 a | 3.10 ab | 9.60 f | 2.10 f | 1.22 | 7.82 a | 2.97 ab | 9.30 d | 2.40 e | 1.40 |
T2 | 7.83 ab | 2.90 bc | 9.86 de | 2.10 f | 1.22 | 7.80 a | 2.66 bc | 9.13 d | 2.40 e | 1.40 |
T3 | 7.83 ab | 3.23 ab | 9.77 ef | 2.10 f | 1.22 | 7.78 a | 2.90 abc | 9.10 d | 2.40 e | 1.40 |
T4 | 7.66 c | 3.0 abc | 10.03 cd | 3.30 e | 1.92 | 7.76 a | 2.93 abc | 10.26 c | 3.50 c | 2.03 |
T5 | 7.70 bc | 2.87 bc | 9.90 de | 3.50 d | 2.03 | 7.73 ab | 2.60 bc | 10.06 c | 3.20 d | 1.86 |
T6 | 7.60 cd | 2.93 bc | 10.13 c | 3.50 d | 2.03 | 7.66 ab | 2.63 bc | 10.10 c | 3.40 c | 1.98 |
T7 | 7.50 de | 2.63 cd | 10.93 a | 4.50 b | 2.62 | 7.50 c | 2.47 c | 11.50 a | 5.50 b | 3.20 |
T8 | 7.40 e | 3.03 ab | 10.86 a | 5.70 a | 3.31 | 7.50 c | 2.93 ab | 11.33 a | 5.90 a | 3.43 |
T9 | 7.46 de | 2.33 d | 10.05 b | 4.10 c | 2.38 | 7.60 bc | 2.47 c | 10.80 b | 5.50 b | 3.20 |
T10 | 7.86 a | 3.37 a | 7.20 g | 2.00 f | 1.16 | 7.80 a | 3.20 a | 7.53 e | 2.10 f | 1.22 |
LSD 0.05 | 0.14 | 0.34 | 0.20 | 0. 19 | - | 0.15 | 0.43 | 0.28 | 0.17 | - |
Treatment | Celery | Lettuce | ||||
---|---|---|---|---|---|---|
N% | P% | K% | N% | P% | K% | |
T1 | 0.023 a | 0.007 a | 0.0090 a | 0.025 a | 0.008 a | 0.0086 a |
T2 | 0.0203 bc | 0.006 ab | 0.0086 ab | 0.021 c | 0.0073 ab | 0.0073 abc |
T3 | 0.0183 c | 0.0053 abc | 0.0073 cde | 0.0193 d | 0.007 ab | 0.0066 bc |
T4 | 0.018 c | 0.0033 d | 0.0071 de | 0.0186 e | 0.0033 d | 0.0066 bc |
T5 | 0.0176 c | 0.0043 bcd | 0.0067 de | 0.0180 e | 0.0043 cd | 0.0066 bc |
T6 | 0.019 c | 0.0036 cd | 0.0065 ef | 0.019 de | 0.0046 cd | 0.0066 bc |
T7 | 0.021 abc | 0.0066 a | 0.0089 a | 0.022 c | 0.0070 ab | 0.0080 ab |
T8 | 0.022 ab | 0.0070 a | 0.0084 abc | 0.023 b | 0.0063 abc | 0.0076 ab |
T9 | 0.022 ab | 0.0063 a | 0.0077 bcd | 0.0216 c | 0.0056 bc | 0.0066 bc |
T10 | 0.019 c | 0.0004 e | 0.0054 f | 0.0196 d | 0.0004 e | 0.0060 c |
LSD 0.05 | 0.013 | 0.0013 | 0.001 | 0.0025 | 0.0015 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, S.S.M.; El-Hassanin, A.S.; Soliman, A.S.; El-Chaghaby, G.A.; Rashad, S.; Elgaml, N.M.M.; Awad, A.A. Phycoremediation of Potato Industry Wastewater for Nutrient Recovery, Pollution Reduction, and Biofertilizer Production for Greenhouse Cultivation of Lettuce and Celery in Sandy Soils. Int. J. Plant Biol. 2024, 15, 652-672. https://doi.org/10.3390/ijpb15030048
Mostafa SSM, El-Hassanin AS, Soliman AS, El-Chaghaby GA, Rashad S, Elgaml NMM, Awad AA. Phycoremediation of Potato Industry Wastewater for Nutrient Recovery, Pollution Reduction, and Biofertilizer Production for Greenhouse Cultivation of Lettuce and Celery in Sandy Soils. International Journal of Plant Biology. 2024; 15(3):652-672. https://doi.org/10.3390/ijpb15030048
Chicago/Turabian StyleMostafa, Soha S. M., Adel S. El-Hassanin, Amira S. Soliman, Ghadir A. El-Chaghaby, Sayed Rashad, Naayem M. M. Elgaml, and Adel A. Awad. 2024. "Phycoremediation of Potato Industry Wastewater for Nutrient Recovery, Pollution Reduction, and Biofertilizer Production for Greenhouse Cultivation of Lettuce and Celery in Sandy Soils" International Journal of Plant Biology 15, no. 3: 652-672. https://doi.org/10.3390/ijpb15030048
APA StyleMostafa, S. S. M., El-Hassanin, A. S., Soliman, A. S., El-Chaghaby, G. A., Rashad, S., Elgaml, N. M. M., & Awad, A. A. (2024). Phycoremediation of Potato Industry Wastewater for Nutrient Recovery, Pollution Reduction, and Biofertilizer Production for Greenhouse Cultivation of Lettuce and Celery in Sandy Soils. International Journal of Plant Biology, 15(3), 652-672. https://doi.org/10.3390/ijpb15030048