Phytochemical Profile, Antioxidant Potential, Proximate and Trace Elements Composition of Leaves, Stems and Ashes from 12 Combretum spp. Used as Food Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Leaves
2.2. Screening of Phytoconstituents
- Saponins
- Tannins
- Phlobotannins
- Terpenes/terpenoids
- Steroids
- Cardiac glycosides
- Flavonoids
- Alkaloids
2.2.1. Quantification of Phytochemicals
- Total phenolic content
- Total tannin and total flavonoid content
2.2.2. Quantitative Antioxidant Activity Assay
2.3. Proximate Analysis
2.3.1. Estimation of Moisture Content
2.3.2. Estimation of Ash Content
2.3.3. Protein Determination
2.3.4. Determination of Energy
2.4. Mineral or Trace Elements Analysis
- Digestion of the Dried Leaves and Stems
2.5. Statistical Analysis
3. Results
3.1. Phytochemicals
- Quantitative Phytochemical Composition of the Combretum Plants
3.2. Antioxidants
3.3. Proximate Analysis
3.3.1. Ash
3.3.2. Moisture
3.3.3. Protein Percentage
3.3.4. Mineral and Trace Metals Composition of the Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zengin, G.; Cakmak, Y.S.; Guler, G.O.; Aktumsek, A. Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. Subspecies hayekiana Wagenitz. Rec. Nat. Prod. 2011, 5, 123–132. [Google Scholar]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.X.; Silva, S.F.; Guedes, R.J.; Almeida, S. Biological Oxidations and Antioxidant Activity of Natural Products, Phytochemicals as Nutraceuticals-Global Approaches to Their Role in Nutrition and Health; Intech Open: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Sriti, J.; Jemia, M.B.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oil and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 2006, 94, 19–25. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Kulisica, T.; Radonicb, A.; Katalinicc, V.; Milosa, M. Use of different methods for testing antioxidative activity of Oregano essential oil. Food Chem. 2004, 85, 633–640. [Google Scholar] [CrossRef]
- Wada, L.; Ou, B. Antioxidant activity and phenoliccontent of Oregon cane berries. J. Agric. Food Chem. 2002, 50, 3495–3500. [Google Scholar] [CrossRef] [PubMed]
- Lachman, J.; Orsák, M.; Pivec, V. Antioxidant contents and composition in some fruits and their role in human nutrition. Hortic. Sci. 2000, 27, 103–117. [Google Scholar]
- Zia-ul-haq, M.; Iqbal, S.; Ahmad, S.; Bhanger, M.I.; Wiczkowski, W.; Amarowicz, R. Antioxidant potential of Desi chickpea varieties commonly consumed in Pakistan. J. Food Lipids. 2009, 15, 326–342. [Google Scholar] [CrossRef]
- Perez-Lamela, C.; Garcia-Falcon, M.S.; Simal-Gandara, J.; Orriols-Fernandez, I. Influence of grape variety, vine system and enological treatments on the colour stability of young red wines. Food Chem. 2007, 101, 601–606. [Google Scholar] [CrossRef]
- McGaw, L.J.; Rabe, T.; Sparg, S.G.; Jäger, A.K.; Eloff, J.N.; Van Staden, J. An investigation of the biological activity of Combretum species. J. Ethnopharmacol. 2001, 75, 45–50. [Google Scholar] [CrossRef]
- Atindehou, K.K.; Schmid, C.; Brun, R.; Koné, M.W.; Traore, D. Antitrypanosomal anti-plasmodial activity of medicinal plants from Côte d‘Ivoire. J. Ethnopharmacol. 2009, 90, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Spiegelhalder, B.; Bartsch, H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur. J. Cancer 2000, 36, 1235–1247. [Google Scholar] [CrossRef]
- Sala, A.; Recio, M.D.; Giner, R.M.; Manez, S.; Tournier, H.; Schinella, G.; Rios, J.L. Anti-inflammatory, and antioxidant properties of Helichrysum italicum. J. Pharm. Pharmacol. 2002, 54, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Masoko, P.; Eloff, J.N. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 231–239. [Google Scholar]
- Rogers, C.B.; Verotta, L. Chemistry and biological properties of the African Combretaceae. In Proceedings of the First International IOCD-Symposium, Victoria Falls, Zimbabwe, 25–28 February 1996; UZ Publications: Harare, Zimbabwe, 1996; pp. 121–141. [Google Scholar]
- Eloff, J.N.; Katerere, D.R.; McGaw, L.J. The biological activity and chemistry of the southern African Combretaceae J. Ethnopharmacol. 2008, 119, 686–699. [Google Scholar] [CrossRef]
- Muthu, C.; Ayyanar, M.; Raja, N.; Ignacimuthu, S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J. Ethnobiol. Ethnomed. 2006, 2, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borokini, T.I.; Omotayo, F.O. Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. J. Med. Plant Res. 2012, 6, 1106–1118. [Google Scholar]
- Odebiyi, O.O.; Sofowora, E.A. Phytochemical screening of Nigerian medicinal plants II. Lloydia 1977, 41, 234–246. [Google Scholar]
- Humadi, S.S.; Istudor, V. Quantitative analysis of bioactive compound Hibiscus sabadariffa L. extracts note 1: Quantitative analysis of flavonoids. Farmácia 2008, 6, 699–707. [Google Scholar]
- Tambe, V.D.; Bhambar, R.S. Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus Tiliaceus Linn. wood extracts. Res. Rev. 2014, 2, 2321–6182. [Google Scholar]
- Chigayo, K.; Mojapelo, P.E.L.; Moleele, S.M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac. J. Trop. Biomed. 2016, 6, 1037–1043. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official methods of analysis of the Association of Official Analytical Chemists; AOAC International: Rockville, MD, USA, 1994. [Google Scholar]
- Zhang, X.R.; Kaunda, J.S.; Zhu, H.T.; Wang, D.; Yang, C.R.; Zhang, Y.J. The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review, Natural Products, and Bioprospecting; Springer: Singapore, 2019. [Google Scholar]
- Trease, G.E.; Evans, W.C. Pharmacognosy, 14th ed.; W.B. Sanders: London, UK, 1989; p. 288. [Google Scholar]
- Sofowora, L.A. Medicinal Plants and Traditional Medicine in Africa; Spectrum Books Ltd.: Ibaban, Philippines, 1993; pp. 55–71. [Google Scholar]
- Abo, K.A.; Ogunleye, V.O.; Ashidi, J.S. Antimicrobial Potential of Spondiasmonbin, croton zambesicus and zygotritonia crocea. Phytother. Res. 1999, 13, 494–497. [Google Scholar] [CrossRef]
- Nweze, E.I.; Okafor, J.I.; Njoku, O. Methabolic Extracts of Treme guineenes (Schumm and thorn) and Morinda lucida Benth used in Nigeria Herbal Medicinal practice. Biol. Res. 2004, 2, 39–48. [Google Scholar]
- Mishra, A.K.; Kehri, H.K.; Sharma, B.; Pandey, A.K. Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, E.J. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 1998, 439, 175–182. [Google Scholar] [PubMed]
- Puupponen-Pimia¨, R.; Nohynek, L.; Meier, C.; Ka¨hko¨nen, M.; Heinonen, M.; Hopia, A. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 9, 494–507. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr. Cancer 1993, 20, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure–activity relationships. J. Nutri. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Antioxidant, lipo-protective and antibacterial activities of phytoconstituents present in Solanum xanthocarpum root. Int. Rev. Biophys. Chem. 2012, 3, 42–47. [Google Scholar]
- Pettit, G.R.; Smith, C.R.; Singh, S.B. Recent advances in the chemistry of plant antineoplastic constituents. In Biologically Active Natural Products, Proceedings of the Phytochemical Society of Europe; Hostettmann, K., Lea, P.J., Eds.; Oxford Science Publications: Oxford, UK, 1987. [Google Scholar]
- Schwikkard, S.; Zhou, B.N.; Glass, T.E.; Sharp, J.L.; Mattern, M.R.; Johnson, R.K.; Kingston, D.G.I. Bioactive compounds from Combretum erythrophyllum. J. Nat. Prod. 2000, 63, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Letcher, R.M.; Nhamo, L.R.M. Chemical constituents of the Combretaceae. Part IV. Phenanthrene derivatives from the heartwood of Combretum hereroense. Perkin Trans. 1973, 1, 1179–1181. [Google Scholar] [CrossRef]
- Facundo, V.A.; Andrade, C.H.S.; Silveira, E.R.; Braz-Filho RHufford, C.D. Triterpenes and flavonoids from Combretum leprosum. Phytochem. Lett. 1993, 32, 411–415. [Google Scholar] [CrossRef]
- Masoko, P.; Picard, J.; Eloff, J.N. The antifungal activity of twenty-four southern African Combretum species (Combretaceae). S. Afr. J. Bot. 2007, 73, 173–183. [Google Scholar] [CrossRef]
- Masoko, P.; Picard, J.; Eloff, J.N. Antifungal activities of six South African Terminalia species (Combretaceae). J. Ethnopharmacol. 2005, 99, 301–308. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Cook, N.C.; Samman, S. Review: Flavonoids-chemistry, metabolism, cardio protective effects and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Tijjani, M.A.; Abdurahman, F.I.; Buba, S.W.; Mala, G.I.; Akan, J.C.; Aji, B.M. Abdullahi. A.S. Chemical and proximate contents of methanolic leaf extract of Piliostigma thonningii schum (Camel Foot). J. Chem. Pharm. Res. 2012, 4, 2409–2414. [Google Scholar]
- Iniaghe, O.M.; Malomo, S.O.; Adebayo, J.O. Proximate composition and phytochemical constituents of leaves of some Acalypha species. Pak. J. Nutr. 2009, 8, 256–258. [Google Scholar] [CrossRef] [Green Version]
- Adesuyi, A.O.; Awosanya, O.A.; Adaramola, F.B.; Omeonu, A.I. Nutritional and phytochemical screening of Aloe barbadensis. Curr. Res. J. Biol. 2011, 4, 4–9. [Google Scholar]
- Von Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of Rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J. Agric. Food Chem. 1997, 45, 632–638. [Google Scholar] [CrossRef]
- Jaitak, V.; Sharma, K.; Kalia, K.; Kumar, N.; Singh, H.P.; Kaul, V.K.; Singh, B. Antioxidant activity of Potentilla fulgens: An alpine plant of western Himalaya. J. Food Compos. Anal. 2010, 23, 142–147. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Lima De Morais, G.R.; De Sales, I.R.P.; Filho, M.R.D.C.; De Jesus, N.Z.T.; De Sousa Falcao, H.; Barbosa-Filho, J.M.; Cabral, A.G.S.; Souto, A.L.; Tavares, J.F.; Batista, L.M. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules 2012, 17, 9142–9206. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Prasad, S.G.M.; Mohd Nayeem, A.; Prasad, M. Analysis of antioxidant activity of herbal yoghurt prepared from different milk. J. Pharm. 2015, 4, 18–20. [Google Scholar]
- FNB. Food and Nutrition Board Dietary Reference Intakes for Water Potassium, Sodium, Chloride and Sulphate; Institute of Medicine, National Academies, National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Raman, R.C.; Ipper, G.B.; Subhash, J.D. Preliminary phytochemical investigation of extract of leaves of Pergularia daemia Linn. Int. J. Pharm. Sci. 2010, 1, 111–116. [Google Scholar]
- Gopalan, C.; Ramasastri, B.V.; Balasubramanian, S.C.; Narsinagarao, B.S.; Deosthale, Y.G.; Pant, K.C. Nutritive Value of Indian Foods; India National Institute of Nutrition: Hyderabad, India, 1999. [Google Scholar]
- Odhav, B.; Beekrum, S.; Akula, U.; Baijnath, H. Preliminary assessment of nutritional value of traditional leafy vegetables in KwaZulu-Natal, South Africa. J. Food Compos. Anal. 2007, 20, 430–435. [Google Scholar] [CrossRef]
- Perrett, D. From ‘protein’ to the beginnings of clinical proteomics. Proteom.—Clin. Appl. 2007, 1, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Keskin, O.; Tuncbag, N.; Gursoy, A. Characterization, and prediction of protein interfaces to infer protein-protein interaction networks. Curr. Pharm. Biotechnol. 2007, 9, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A. Proximate and mineral composition of the marchubeh (Asparagus officinalis). World J. Dairy Food Sci. 2009, 4, 142–149. [Google Scholar]
- Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. 2016, 59, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Aiasgharpour, M.; Farzami, M. Trace Elements in Human Nutrition: A Review. Int. J. Med. 2013, 2, 115–128. [Google Scholar]
- Chaturvedi, V.C.; Shrivastava, R.; Upreti, R.K. Viral infections and trace elements: A complex trace element. Curr. Sci. 2004, 87, 1536–1554. [Google Scholar]
- Khalid, N.; Ahmed, I.; Latif, M.S.Z.; Rafique, T.; Fawad, S.A. Comparison of antimicrobial activity, phytochemical profile and minerals composition of garlic Allium sativum and Allium tuberosum. J. Appl. Biol. Chem. 2014, 57, 311–317. [Google Scholar] [CrossRef]
- Bouba, A.A.; Njintang, N.Y.; Foyet, H.S.; Scher, J.; Montet, D.; Mbofung, C.M.F. Agricultural systems, a literature review and annotated bibliography. Int. J. Food Sci. Nutr. 2012, 1, 213–224. [Google Scholar]
- Sundriyal, M.; Sundriyal, R.C. Wild edible plants of the Sikkim Himalaya: Nutritive values of selected species. Econ. Bot. 2004, 58, 286–299. [Google Scholar] [CrossRef]
- Serfor-Armah, Y.; Nyarko, B.J.B.; Akaho, E.H.K.; Kyere, A.W.K.; Osae, S.; Oppong-Boachie, K. Multielemental analysis of some traditional plant medicines used in Ghana. J. Trace Microprobe Technol. 2002, 20, 419–427. [Google Scholar] [CrossRef]
- Sinha, B.K.; Bhattacharjee, S.; Tapan, S. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water-soluble vitamins and phenolics by RP-HPLC in some lesser-used wild edible plants. Heliyon 2019, 5, e01431. [Google Scholar]
- Saupi, N.; Zakaria, M.H.; Bujang, J.S. Analytic chemical composition, and mineral content of yellow velvet leaf (Limnocharis flava L. Buchenau)’s edible parts. J. Appl. Sci. 2009, 9, 2969–2974. [Google Scholar] [CrossRef]
- Geissler, C.A.; Powers, H.J. Human Nutrition, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Brookes, K.B.; Doudoukina, O.V.; Katsoulis, L.C.; Veale, D.J.H. Uteroactive constituents from Combretum kraussii. S. Afr. J. Chem. 1999, 52, 127–132. [Google Scholar]
- Seal, T.; Chaudhuri, K. Nutritional analysis of some selected wild edible plants consumed by the tribal people of Meghalaya state in India. Int. J. Food Sci. Nutr. 2016, 1, 39–43. [Google Scholar]
- Saikia, P.; Deka, D.C. Mineral content of some wild green leafy vegetables of North-East India. J. Chem. Pharm. 2013, 5, 117–121. [Google Scholar]
Step | Target Temp °C | Pressure Max [bar] | Ramp Time | Hold Time Min | % Power |
---|---|---|---|---|---|
1 | 150 | 30 | 10 | 5 | 50 |
2 | 150 | 35 | 5 | 15 | 80 |
3 | 50 | 35 | 1 | 10 | 0 |
Plant | Saponins | Tannins | Phlabatannins | Terpenoids | Steroids | Cardiac Glyocosides | Flavonoids | Alkaloids |
---|---|---|---|---|---|---|---|---|
C. adenogonium | + | + | - | + | + | + | + | - |
C. apiculatum | + | + | - | + | + | + | + | - |
C. bracteosum | + | + | - | + | + | + | + | - |
C. caffrum | + | + | - | + | + | + | + | - |
C. elaegnoides | + | + | - | + | + | + | + | - |
C. erythrophyllum | + | + | - | + | + | + | + | - |
C. imberbe | + | + | - | + | + | + | + | - |
C. krausii | - | + | - | + | + | + | + | - |
C. mkuzense | + | + | - | + | + | + | + | - |
C. padoides | + | + | - | + | + | + | + | - |
C. vendae | + | + | - | + | + | + | + | - |
C. zeyherii | + | + | - | + | + | + | + | - |
Plant | Saponins | Tannins | Phlabatannins | Terpenoids | Steroids | Cardiac Glycosides | Flavonoids | Alkaloids |
---|---|---|---|---|---|---|---|---|
C. adenogdnium | + | - | - | + | + | - | - | - |
C. apiculatum | + | - | - | + | + | - | - | - |
C. bracteosum | + | - | - | + | + | - | - | - |
C. caffrum | + | - | - | + | + | - | - | - |
C. elaeagnoides | + | - | - | + | + | - | - | - |
C. erythrophyllum | + | - | - | + | + | - | - | - |
C. imberbe | + | - | - | + | + | - | - | - |
C. krausii | - | - | - | + | + | - | - | - |
C. mkuzense | + | + | - | + | + | - | - | - |
C. padoides | + | + | - | + | + | - | - | - |
C. vendae | + | - | - | + | + | - | - | - |
C. zeyherii | + | - | - | + | + | - | - | - |
Plant | Saponins | Tannins | Phlabatannins | Terpenoids | Steroids | Cardiac Glycosides | Flavonoids | Alkaloids |
---|---|---|---|---|---|---|---|---|
C. adenogdnium | + | - | - | + | + | - | - | - |
C. apiculatum | + | - | - | + | + | - | - | - |
C. bracteosum | + | - | - | + | + | - | - | - |
C. caffrum | + | - | - | + | + | - | - | - |
C. elaegnoides | + | - | - | + | + | - | - | - |
C. erythrophyllum | + | - | - | + | + | - | - | - |
C. imberbe | + | - | - | + | + | - | - | - |
C. krausii | - | - | - | + | + | - | - | - |
C. mkuzense | + | + | - | + | + | - | - | - |
C. padoides | + | + | - | + | + | - | - | - |
C. vendae | + | - | - | + | + | - | - | - |
C. zeyherii | + | - | - | + | + | - | - | - |
Plant | Ca | Co | Cu | Fe | K | Mg | Mn | Na | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|
C. adenogonium | 241 | 1.03 | 0.661 | 3.14 | 59.9 | 23.1 | 1.67 | 0 f | 3.5 | 0.941 |
C. apiculatum | 198 | 1.66 | 0.508 | 2.07 | 65.5 | 51.2 | 3.98 | 12 | 1.45 | 0.801 |
C. bracteosum | 283 | 1.54 | 0.584 | 3.19 | 63.4 | 28.7 | 1.43 | 14 | 1.61 | 1.03 |
C. caffrum | 119 | 1.14 | 0.444 | 2.63 | 63.3 | 37.7 | 2.96 | 9.5 | 1.01 | 0.688 |
C. elaegnoides | 4.86 | 0.114 | 0.15 | 0.209 | 2.98 | 2.03 | 0.0319 | 1.8 | 0.0139 | 0.177 |
C. erythrophyllum | 131 | 1.02 | 0.432 | 1.71 | 35.1 | 26.3 | 1.32 | 9.1 | 0.983 | 1.04 |
C. imberbe | 46.6 | 0.816 | 0.328 | 0.586 | 16.7 | 18.8 | 0.23 | 6.6 | 0.751 | 0.279 |
C. kraussii | 117 | 1.11 | 0.423 | 1.49 | 39 | 27.4 | 1.69 | 9.7 | 1.07 | 0.599 |
C. mkuzense | 176 | 1.36 | 0.509 | 2.74 | 63.2 | 24.3 | 2.26 | 11 | 1.25 | 0.792 |
C. padoides | 132 | 1.26 | 0.467 | 1.98 | 37.1 | 34.7 | 2.57 | 10 | 1.17 | 0.601 |
C. vendae | 3.9 | 0.701 | 0.367 | 2.51 | 51.7 | 22.3 | 1.84 | 6.7 | 0.693 | 0.351 |
C. zeyherii | 36.1 | 0.456 | 0.258 | 0.955 | 23.2 | 8.53 | 0.929 | 4.3 | 0.36 | 0.006 |
Plant | Trace Elements/Minerals | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Co | Cu | Fe | K | Mg | Mn | Na | Ni | Zn | |
C. apiculatum | 253 | 1.15 | 0.784 | 1.2 | 30 | 25 | 2 | 10.5 | 3.7 | 0.968 |
C. bracteosum | 80 | 0.526 | 0.45 | 1.52 | 28 | 11 | 0.798 | 12.5 | 2.88 | 0.472 |
C. caffrum | 95 | 0.782 | 0.527 | 2 | 88 | 18 | 3.4 | 6.8 | 3.1 | 0.63 |
C. elaegnoides | 176 | 0.81 | 0.524 | 1.41 | 26 | 14 | 0.995 | 5 | 3.34 | 0.782 |
C. erythrophyllum | 284 | 0.978 | 0.679 | 2.1 | 31 | 19 | 1.19 | 9.1 | 3.43 | 1.09 |
C. imberbe | 235 | 1.08 | 0.678 | 2.1 | 33 | 22 | 1.45 | 5.8 | 3.56 | 0.877 |
C. kraussii | 2.67 | 0.13 | 0.0547 | 0.145 | 2.89 | 2.61 | 0.307 | 8.7 | 1.99 | 0.53 |
C. mkuzense | 85.1 | 0.546 | 0.386 | 2.37 | 16.1 | 7.6 | 0.997 | 8 | 2.87 | 0.387 |
C. padoides | 104 | 0.7 | 0.44 | 1.18 | 26.1 | 13.5 | 1.23 | 5.1 | 2.98 | 0.397 |
C. vendae | 8.08 | 0.156 | 0.0707 | 0.117 | 11.6 | 2.19 | 0.428 | 3.5 | 1.89 | 0.567 |
C. zeyherii | 94.5 | 0.623 | 0.523 | 1.92 | 31 | 16.1 | 2.17 | 7.8 | 2.9 | 0.342 |
Plant | Trace Elements/Minerals | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Co | Cu | Fe | K | Mg | Mn | Na | Ni | Zn | |
C. adenogonium | 869 | 1.13 | 0.53 | 0.8 | 29 | 22 | 0.867 | 18.8 | 1.57 | 2.93 |
C. apiculatum | 804 | 1.15 | 0.5 | 2.32 | 93 | 35.1 | 2.19 | 18.01 | 1.66 | 3.4 |
C. bracteosum | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C. caffrum | 38.9 | 0.312 | 0.208 | 0.211 | 36.2 | 2.58 | 0.172 | 3.75 | 0.386 | 0.36 |
C. elaegnoides | 579 | 0.92 | 0.375 | 0.766 | 69.9 | 30.9 | 1.15 | 12.4 | 1.22 | 1.58 |
C. erythrophyllum | 516 | 0.944 | 0.614 | 3.17 | 78.8 | 19.1 | 0.735 | 16.2 | 1.25 | 3.14 |
C. imberbe | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C. kraussii | 231 | 0.669 | 0.338 | 3.17 | 70.3 | 20 | 1.03 | 8.48 | 0.874 | 5.88 |
C. padoides | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C. mkuzense | 61 | 0.245 | 0.19 | 0.188 | 8.67 | 3.2 | 0.143 | 2.35 | 0.268 | 0.586 |
C. vendae | 26.3 | 0.248 | 0.185 | 0.315 | 8.67 | 2.08 | 0.119 | 2.14 | 0.284 | 0.411 |
C. zeyherii | 980 | 1.73 | 1.07 | 25.1 | 196 | 57.9 | 2.71 | 24.4 | 2.22 | 18.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathipa, M.M.; Mphosi, M.S.; Masoko, P. Phytochemical Profile, Antioxidant Potential, Proximate and Trace Elements Composition of Leaves, Stems and Ashes from 12 Combretum spp. Used as Food Additives. Int. J. Plant Biol. 2022, 13, 561-578. https://doi.org/10.3390/ijpb13040045
Mathipa MM, Mphosi MS, Masoko P. Phytochemical Profile, Antioxidant Potential, Proximate and Trace Elements Composition of Leaves, Stems and Ashes from 12 Combretum spp. Used as Food Additives. International Journal of Plant Biology. 2022; 13(4):561-578. https://doi.org/10.3390/ijpb13040045
Chicago/Turabian StyleMathipa, Morongwa Mary, Maboko Samuel Mphosi, and Peter Masoko. 2022. "Phytochemical Profile, Antioxidant Potential, Proximate and Trace Elements Composition of Leaves, Stems and Ashes from 12 Combretum spp. Used as Food Additives" International Journal of Plant Biology 13, no. 4: 561-578. https://doi.org/10.3390/ijpb13040045
APA StyleMathipa, M. M., Mphosi, M. S., & Masoko, P. (2022). Phytochemical Profile, Antioxidant Potential, Proximate and Trace Elements Composition of Leaves, Stems and Ashes from 12 Combretum spp. Used as Food Additives. International Journal of Plant Biology, 13(4), 561-578. https://doi.org/10.3390/ijpb13040045