Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum compactum Benth. Essential Oil from Morocco
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Control Study (Soil, Water, and Plant)
2.1.1. Irrigation Water Quality
pH and Salinity (Electrical Conductivity)
Risk Related to Nitrate Pollution
Mineral Composition
2.1.2. Soil Quality
Soil pH and Salinity
Total Phosphorus and Nitrogen
Soil Organic Matter
2.1.3. Quality Control of Plant Material (O. compactum)
pH and Ash Content
2.2. Essential Oil Yield Extraction
2.3. Chemical Composition of Essential Oils
2.4. Antibacterial Activity
3. Materials and Methods
3.1. Study Area
3.2. Plant Material
3.3. Quality Control Study (Soil, Water, and Plant)
3.3.1. Irrigation Water Physicochemical Quality
3.3.2. Soil Quality
Soil pH
Organic Matter
Total Nitrogen
Assimilable Phosphorus
3.3.3. Quality Control of Plant Material
pH
Ash Content
3.4. Phytochemical Analysis
3.4.1. Determination of Moisture Content
3.4.2. Essential Oil Extraction
3.4.3. Phytochemical Analysis of the EO
3.5. Antimicrobial Testing of O. Compactum Essential Oils
3.5.1. Microbial Strains
3.5.2. Aromatogram in Solid Medium
3.5.3. Macro Dilution in Liquid Medium (MIC and MBC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamila, F.; Mostafa, E. Ethnobotanical Survey of Medicinal Plants Used by People in Oriental Morocco to Manage Various Ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Bronzwaer, S.L.A.M.; Cars, O.; Buchholz, U.; Mölstad, S.; Goettsch, W.; Veldhuijzen, I.K.; Kool, J.L.; Sprenger, M.J.W.; Degener, J.E. A European Study on the Relationship between Antimicrobial Use and Antimicrobial Resistance. Emerg. Infect. Dis. 2002, 8, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Wegener, H.C. Antibiotics in Animal Feed and Their Role in Resistance Development. Curr. Opin. Microbiol. 2003, 6, 439–445. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- ECDC/EMEA. The Bacterial Challenge: Time to React. Stock. Eur. Cent. Dis. Prev. Control 2009, 1, 1–3. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016.
- Chabaud, A.; Jouzeau, A.; Dugravot, L.; Péfau, M.; Dumartin, C.; Simon, L. Mission Nationale de Surveillance et de Prévention de l’antibiorésistance En Établissement de Santé: Données de La Résistance Aux Antibiotiques. Rev. Francoph. Lab. 2021, 2021, 62–69. [Google Scholar] [CrossRef]
- Mendelson, M.; Matsoso, M.P. The World Health Organization Global Action Plan for Antimicrobial Resistance. S. Afr. Med. J. 2015, 105, 325. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Organization Global Strategy for Containment of Antimicrobial Resistance; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal Activities of Plant Essential Oils and Some of Their Isolated Constituents against Campylobacter Jejuni, Escherichia Coli, Listeria Monocytogenes, and Salmonella Enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant Activity of Selected Essential Oil Components in Two Lipid Model Systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Isman, M.B. Plant Essential Oils for Pest and Disease Management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Sözmen, F.; Uysal, B.; Köse, E.O.; Aktaş, Ö.; Cinbilgel, I.; Oksal, B.S. Extraction of the Essential Oil from Endemic Origanum bilgeri, P.H. Davis with Two Different Methods: Comparison of the Oil Composition and Antibacterial Activity. Chem. Biodivers. 2012, 9, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, A.; Palou, E.; Lopez-Malo, A. Antifungal Activity Evaluation of Mexican Oregano (Lippia Berlandieri Schauer) Essential Oil on the Growth of Aspergillus Flavus by Gaseous Contact. J. Food Prot. 2011, 74, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Sivropoulou, A.; Papanikolaou, E.; Nikolaou, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and Cytotoxic Activities of Origanum Essential Oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Baser, K.H.C. The Turkish Origanum Species. In The Genera Origanum and Lippia; CRC Press: Boca Raton, FL, USA, 2002; Volume 109. [Google Scholar]
- Traboulsi, A.F.; Taoubi, K.; El-Haj, S.; Bessiere, J.M.; Rammal, S. Insecticidal Properties of Essential Plant Oils against the Mosquito Culex Pipiens Molestus (Diptera: Culicidae). Pest Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal Activity of Essential Oils and Their Components against the Root-Knot Nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Babili, F.; Bouajila, J.; Souchard, J.P.; Bertrand, C.; Bellvert, F.; Fouraste, I.; Moulis, C.; Valentin, A. Oregano: Chemical Analysis and Evaluation of Its Antimalarial, Antioxidant, and Cytotoxic Activities. J. Food Sci. 2011, 76, C512–C518. [Google Scholar] [CrossRef]
- Nakiboglu, M.; Urek, R.O.; Kayali, H.A.; Tarhan, L. Antioxidant Capacities of Endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem. 2007, 104, 630–635. [Google Scholar] [CrossRef]
- Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. Evaluation of the Antimicrobial and Antioxidant Activities of Origanum dictamnus Extracts before and after Encapsulation in Liposomes. Molecules 2007, 12, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Lemhadri, A.; Zeggwagh, N.A.; Maghrani, M.; Jouad, H.; Eddouks, M. Anti-Hyperglycaemic Activity of the Aqueous Extract of Origanum vulgare Growing Wild in Tafilalet Region. J. Ethnopharmacol. 2004, 92, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Belkamel, A.; Bammi, J.; Belkamel, A. Origanum compactum (Benth.). J. Anim. Plant Sci. 2013, 19, 2880–2887. [Google Scholar]
- Fliou, J.; Riffi, O.; Amechrouq, A.; Elhourri, M.; Ghouati, Y. Comparative Study of the Chemical Composition of the Essential Oil of Origanum compactum from the Seven Regions of Morocco and Their Antimicrobial Activity. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 42–48. [Google Scholar] [CrossRef]
- Bouhdid, S.; Skali, S.N.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Amensour, M.; Abrini, J. Antibacterial and Antioxidant Activities of Origanum compactum Essential Oil. Afr. J. Biotechnol. 2008, 7, 1563–1570. [Google Scholar]
- Tyagi, A.K.; Malik, A. Liquid and Vapour-Phase Antifungal Activities of Selected Essential Oils against Candida Albicans: Microscopic Observations and Chemical Characterization of Cymbopogon Citratus. BMC Complement. Altern. Med. 2010, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Handbook No. 60; United States Department of Agriculture: Washington, DC, USA, 1954; p. 154. [Google Scholar]
- Nakagawa, K.; Amano, H.; Persson, M.; Berndtsson, R. Spatiotemporal Variation of Nitrate Concentrations in Soil and Groundwater of an Intensely Polluted Agricultural Area. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Burford, J.R.; Bremner, J.M. Relationships between the Denitrification Capacities of Soils and Total, Water-Soluble and Readily Decomposable Soil Organic Matter. Soil Biol. Biochem. 1975, 7, 389–394. [Google Scholar] [CrossRef]
- Moustarhfer, K.; Saber, N.; Mohcine, H.; Rafik, F.; Zaakour, F.; Matech, F. Qualité Agronomique Des Terrains Agricoles de La Région de Jorf Lasfar (Doukkala, Maroc). Eur. Sci. J. 2015, 11. [Google Scholar]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The Biochemistry of Environmental Heavy Metal Uptake by Plants: Implications for the Food Chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S. A Critical Review on the Role of Mycorrhizal Fungi in the Uptake of Phosphorus by Plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of Nitrogen for Plant Growth and Development: A Review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Delaunois, A.; Ferrie, Y.; Bouche, M.; Colin, C.; Rionde, C. Guide Pour La Description et l’évaluation de La Fertilité Des Sols. Chamb. Agric. 2008, 81, 1–37. [Google Scholar]
- Azlan, A.; Aweng, E.R.; Ibrahim, C.O.; Noorhaidah, A. Correlation between Soil Organic Matter, Total Organic Matter and Water Content with Climate and Depths of Soil at Different Land Use in Kelantan, Malaysia. J. Appl. Sci. Environ. Manag. 2012, 16, 353–358. [Google Scholar]
- Bandaranayake, W.M. Quality Control, Screening, Toxicity, and Regulation of Herbal Drugs. Mod. phytomedicine Turn. Med. Plants Drugs 2006, 25–57. [Google Scholar] [CrossRef]
- Hernández-Urbiola, M.I.; Pérez-Torrero, E.; Rodríguez-García, M.E. Chemical Analysis of Nutritional Content of Prickly Pads (Opuntia Ficus Indica) at Varied Ages in an Organic Harvest. Int. J. Environ. Res. Public Health 2011, 8, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béjaoui, A.; Chaabane, H.; Jemli, M.; Boulila, A.; Boussaid, M. Essential Oil Composition and Antibacterial Activity of Origanum vulgare Subsp. Glandulosum Desf. at Different Phenological Stages. J. Med. Food 2013, 16, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Khan, S.T.; Khan, M.; Mousa, A.A.; Mahmood, A.; Alkhathlan, H.Z. Chemical Diversity in Leaf and Stem Essential Oils of Origanum vulgare L. and Their Effects on Microbicidal Activities. AMB Express 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Vazirian, M.; Mohammadi, M.; Farzaei, M.H.; Amin, G.; Amanzadeh, Y. Chemical Composition and Antioxidant Activity of Origanum Vulgare Subsp. Vulgare Essential Oil from Iran. Res. J. Pharmacogn. 2015, 2, 41–46. [Google Scholar]
- Özer, Z.; Gören, A.C.; Kılıç, T.; Öncü, M.; Çarıkçı, S.; Dirmenci, T. The Phenolic Contents, Antioxidant and Anticholinesterase Activity of Section Amaracus (Gled.) Vogel and Anatolicon Ietsw. of Origanum L. Species. Arab. J. Chem. 2020, 13, 5027–5039. [Google Scholar] [CrossRef]
- Boughendjioua, H.; Seridi, R. Antimicrobial Efficacy of the Essential Oil of Origanum vulgare from Algeria. J. Pharm. Pharmacol. Res. 2017, 01, 19–27. [Google Scholar] [CrossRef]
- Bouchra, C.; Achouri, M.; Hassani, L.M.I.; Hmamouchi, M. Chemical Composition and Antifungal Activity of Essential Oils of Seven Moroccan Labiatae against Botrytis Cinerea Pers: Fr. J. Ethnopharmacol. 2003, 89, 165–169. [Google Scholar] [CrossRef]
- Ložiene, K.; Venskutonis, P.R. Influence of Environmental and Genetic Factors on the Stability of Essential Oil Composition of Thymus Pulegioides. Biochem. Syst. Ecol. 2005, 33, 517–525. [Google Scholar] [CrossRef]
- Kulkarni, R.N.; Baskaran, K.; Ramesh, S.; Kumar, S. Intra-Clonal Variation for Essential Oil Content and Composition in Plants Derived from Leaf Cuttings of Rose-Scented Geranium (Pelargonium sp.). Ind. Crops Prod. 1997, 6, 107–112. [Google Scholar] [CrossRef]
- Boira, H.; Blanquer, A. Environmental Factors Affecting Chemical Variability of Essential Oils in Thymus Piperella L. Biochem. Syst. Ecol. 1998, 26, 811–822. [Google Scholar] [CrossRef]
- Rajeswara Rao, B.R.; Bhattacharya, A.K.; Kaul, P.N.; Chand, S.; Ramesh, S.I. Changes in Profiles of Essential Oils of Rose-Scented Geranium (Pelargonium sp.) during Leaf Ontogeny. J. Essent. Oil Res. 1993, 5, 301–304. [Google Scholar] [CrossRef]
- Mancini, E.; Camele, I.; Elshafie, H.S.; De Martino, L.; Pellegrino, C.; Grulova, D.; De Feo, V. Chemical Composition and Biological Activity of the Essential Oil of Origanum vulgare ssp. hirtum from Different Areas in the Southern Apennines (Italy). Chem. Biodivers. 2014, 11, 639–651. [Google Scholar] [PubMed]
- Chorianopoulos, N.; Kalpoutzakis, E.; Aligiannis, N.; Mitaku, S.; Nychas, G.-J.; Haroutounian, S.A. Essential Oils of Satureja, Origanum, and Thymus Species: Chemical Composition and Antibacterial Activities against Foodborne Pathogens. J. Agric. Food Chem. 2004, 52, 8261–8267. [Google Scholar] [CrossRef]
- Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological Activities of the Essential Oils and Methanol Extract of Origanum vulgare ssp. Vulgare in the Eastern Anatolia Region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Burton, D.; Parra, F.; López, J.; Muñoz, P.; Escobar, H.; Parra, C. Antioxidant and Antibacterial Capacities of Origanum vulgare L. Essential Oil from the Arid Andean Region of Chile and Its Chemical Characterization by GC-MS. Metabolites 2020, 10, 414. [Google Scholar] [CrossRef]
- da Silveira, S.M.; Cunha Júnior, A.; Scheuermann, G.N.; Secchi, F.L.; Vieira, C.R.W. Chemical Composition and Antimicrobial Activity of Essential Oils from Selected Herbs Cultivated in the South of Brazil against Food Spoilage and Foodborne Pathogens. Ciência Rural 2012, 42, 1300–1306. [Google Scholar] [CrossRef] [Green Version]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Antimicrobial Effects of Selected Plant Essential Oils on the Growth of a Pseudomonas Putida Strain Isolated from Meat. Meat Sci. 2006, 73, 236–244. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Vasconcelos, B.; Teixeira, J.C.; Dragone, G.; Teixeira, J.A. Oleaginous Yeasts for Sustainable Lipid Production—From Biodiesel to Surf Boards, a Wide Range of “Green” Applications. Appl. Microbiol. Biotechnol. 2019, 103, 3651–3667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariminik, A.; Moradalizadeh, M.; Foroughi, M.M.; Tebyanian, H.; Motaghi, M.M. Chemical Composition and Antibacterial Activity of the Essential Oils Extracted from 4 Medicinal Plants (Labiatae) of Kerman, Iran. J. Appl. Biotechnol. Rep. 2019, 6, 172–179. [Google Scholar] [CrossRef] [Green Version]
- de Lira, M.H.P.; de Andrade Júnior, F.P.; Moraes, G.F.Q.; da Macena, G.S.; de Pereira, F.O.; Lima, I.O. Antimicrobial Activity of Geraniol: An Integrative Review. J. Essent. Oil Res. 2020, 32, 187–197. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A Review of Biomedical Activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Kos, V.; Budič, B.; Hudnik, V.; Lobnik, F.; Zupan, M. Determination of Heavy Metal Concentrations in Plants Exposed to Different Degrees of Pollution Using ICP-AES. Fresenius. J. Anal. Chem. 1996, 354, 648–652. [Google Scholar] [CrossRef]
- Tessier, A.; Fortin, D.; Belzile, N.; DeVitre, R.R.; Leppard, G.G. Metal Sorption to Diagenetic Iron and Manganese Oxyhydroxides and Associated Organic Matter: Narrowing the Gap between Field and Laboratory Measurements. Geochim. Cosmochim. Acta 1996, 60, 387–404. [Google Scholar] [CrossRef]
- Baize, D.; Girard, M.-C. Référentiel Pédologique; INRA: Paris, France, 1995. [Google Scholar]
- Grieve, I.C. Human Impacts on Soil Properties and Their Implications for the Sensitivity of Soil Systems in Scotland. Catena 2001, 42, 361–374. [Google Scholar] [CrossRef]
- Pansu, M.; Thuriès, L. Kinetics of C and N Mineralization, N Immobilization and N Volatilization of Organic Inputs in Soil. Soil Biol. Biochem. 2003, 35, 37–48. [Google Scholar] [CrossRef]
- Balesdent, J.; Mariotti, A. Measurement of Soil Organic Matter Turnover Using 13C Natural Abundance. Mass Spectrom. Soils 1996, 41, 83–111. [Google Scholar]
- Naman, F.; Soudi, B.; Chiang, N.C.; Zaoui, D. Size Fractionation of Soil Organic Matter Stuck to the Pivots of Sugar Beet in the Doukkala Irrigated Perimeter of Morocco: A Comparatison with the Soil in Situ. Etude Gest. Sols 2002, 9, 127–138. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bradstreet, R.B. Kjeldahl Method for Organic Nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Kovats, E.S. Gas Chromatographic Characterization of Organic Substances in the Retention Index System. Adv. Chromatogr. 1965, 1, 229–247. [Google Scholar]
- Vinod, K.G.; Amit, R.; Vikas, K.N.; Kalishankar, M. Antimicrobial Activity of Spondias Pinnata Resin. J. Med. Plants Res. 2010, 4, 1656–1661. [Google Scholar]
Elements in ppm | Mean ± SD | Elements in ppm | Mean ± SD |
---|---|---|---|
Ag | 0.0000 ± 0.0000 | Ni | 0.0000 ± 0.0000 |
Al | 0.0182 ± 0.0008 | Pb | 0.0023 ± 0.0003 |
As | 0.0000 ± 0.0000 | Sb | 0.0117 ± 0.0016 |
B | 0.0597 ± 0.0007 | Se | 0.0000 ± 0.0000 |
Ba | 0.0378 ± 0.0094 | Sn | 0.0262 ± 0.0011 |
Be | 0.0000 ± 0.0000 | Te | 0.0282 ± 0.0001 |
Cd | 0.0000 ± 0.0000 | Ti | 0.0122 ± 0.0004 |
Co | 0.0016 ± 0.0006 | Tl | 0.0134 ± 0.0036 |
Cr | 0.0000 ± 0.0000 | V | 0.0002 ± 0.0001 |
Cu | 0.0000 ± 0.0000 | Zn | 0.0109 ± 0.0033 |
Fe | 0.0044 ± 0.0008 | k | 1.0100 ± 0.0350 |
Li | 0.0143 ± 0.0000 | Na | 51.260 ± 0.0800 |
Mn | 0.0001 ± 0.0000 | Ca | 122.87 ± 0.0600 |
Mo | 0.0027 ± 0.0001 | Mg | 8.7700 ± 0.0040 |
Plant Species | pH | MO% | Ash | |
---|---|---|---|---|
O. compactum | Test 1 | 6.34 | 8.96 | 91.03 |
Test 2 | 6.27 | 9.73 | 87.76 | |
Mean ± SD | 6.305 ± 0.049 | 9.345 ± 0.544 | 89.39 ± 2.312 |
N° | KI | Chemical Compound | Relative Abundance (%) |
---|---|---|---|
1 | 930 | α-Thujene | 0.22 |
2 | 939 | α-Pinene | 0.47 |
3 | 954 | Camphene | 0.06 |
4 | 979 | β-Pinene | 0.06 |
5 | 979 | 1-Octen-3-ol | 0.16 |
6 | 990 | Myrcene | 0.80 |
7 | 1002 | α-Phellandrene | 0.12 |
8 | 1011 | δ-3-Carene | 0.05 |
9 | 1017 | α-Terpinene | 1.41 |
10 | 1026 | ο-Cymene | 14.33 |
11 | 1029 | β-Phellandrene | 0.13 |
12 | 1029 | Limonene | 0.2 |
13 | 1059 | γ-Terpinene | 11.22 |
14 | 1085 | m-Cymenene | 0.05 |
15 | 1088 | Terpinolene | 0.07 |
16 | 1096 | Linalool | 0.81 |
17 | 1169 | Borneol | 0.11 |
18 | 1177 | Terpinen-4-ol | 0.38 |
19 | 1188 | α-Terpineol | 0.08 |
20 | 1188 | α-Terpineol | 0.17 |
21 | 1238 | Chrysanthenylacetate | 0.06 |
22 | 1290 | Thymol | 38.59 |
23 | 1299 | Carvacrol | 26.65 |
24 | 1419 | (E)-Caryophyllene | 1.62 |
25 | 1454 | α-Humulene | 0.08 |
26 | 1513 | γ-Cadinene | 0.13 |
27 | 1523 | δ-Cadinene | 0.18 |
28 | 1583 | Caryophyllene oxide | 0.84 |
29 | 1959 | Geranyl benzoate | 0.16 |
30 | 1959 | Geranyl benzoate | 0.11 |
Total Identification in %. | 100 | ||
Oxygenated monoterpenes in %. | 61.02 | ||
Hydrocarbon sesquiterpenes in %. | 2.78 | ||
Oxygenated sesquiterpenes in %. | 1.11 | ||
Hydrocarbon monoterpenes in %. | 35.55 |
Bacteria | O. compactum | Amoxicillin 25 μg/disc | Imipenem 10 μg/disc | |||
---|---|---|---|---|---|---|
IZ (mm) | MIC (μL/mL) | MBC (μL/mL) | MBC/MIC | IZ (mm) | IZ (mm) | |
E. coli | 20.3 | 0.35 | 0.7 | 2 | 6 | 26 |
E. pseudocoloides | 19.65 | 0.35 | 0.35 | 1 | 7 | 28 |
E. vekanda | 20 | 0.35 | 0.7 | 2 | 7 | 25 |
K. pneumoniae | 18.5 | 0.7 | 2.8 | 4 | 6 | 28 |
P. aeruginosa | 16.2 | 0.35 | 0.35 | 1 | 6 | 25 |
S. aureus | 27 | 0.35 | 0.7 | 2 | 19.5 | 61 |
Bacterial Strain | Categories (Gram +/Gram −) |
---|---|
E. coli | Gram − |
E. pseudocoloides | Gram − |
E. vekanda | Gram − |
K. pneumoniae | Gram − |
P. aeruginosa | Gram − |
S. aureus | Gram + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayani, M.; Bencheikh, N.; Ailli, A.; Bouhrim, M.; Elbouzidi, A.; Ouassou, H.; Kharchoufa, L.; Baraich, A.; Atbir, A.; Ayyad, F.Z.; et al. Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum compactum Benth. Essential Oil from Morocco. Int. J. Plant Biol. 2022, 13, 546-560. https://doi.org/10.3390/ijpb13040044
Hayani M, Bencheikh N, Ailli A, Bouhrim M, Elbouzidi A, Ouassou H, Kharchoufa L, Baraich A, Atbir A, Ayyad FZ, et al. Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum compactum Benth. Essential Oil from Morocco. International Journal of Plant Biology. 2022; 13(4):546-560. https://doi.org/10.3390/ijpb13040044
Chicago/Turabian StyleHayani, Mouhcine, Noureddine Bencheikh, Atika Ailli, Mohamed Bouhrim, Amine Elbouzidi, Hayat Ouassou, Loubna Kharchoufa, Abdellah Baraich, Aziza Atbir, Fatima Zahra Ayyad, and et al. 2022. "Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum compactum Benth. Essential Oil from Morocco" International Journal of Plant Biology 13, no. 4: 546-560. https://doi.org/10.3390/ijpb13040044
APA StyleHayani, M., Bencheikh, N., Ailli, A., Bouhrim, M., Elbouzidi, A., Ouassou, H., Kharchoufa, L., Baraich, A., Atbir, A., Ayyad, F. Z., Drioiche, A., Addi, M., Hano, C., & Zair, T. (2022). Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum compactum Benth. Essential Oil from Morocco. International Journal of Plant Biology, 13(4), 546-560. https://doi.org/10.3390/ijpb13040044