Assessment of the Effects of Genotype, Location, and Planting Season on the Nutritional Composition and the Metabolizable Energy of Advanced Twenty-Five Maize Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Material
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Proximate Composition of the Hybrid Maize Samples
3.2. Effects of Genotype, Location, and Season on the Maize Hybrids
3.3. Principal Component Analysis (PCA) of Proximate Components of Maize Hybrids
3.4. Cluster Analysis of Maize Hybrids Using the Proximate Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ape, D.I.; Nwogu, N.A.; Uwakwe, E.S.; Ikedinobi, C.S. Comparative Proximate Analysis of Maize and Sorghum Bought from Ogbete Main Market of Enugu State, Nigeria. Greener J. Agric. Sci. 2016, 6, 1–4. [Google Scholar] [CrossRef]
- Adeniyi, O.O.; Ariwoola, O.S. Comparative Proximate Composition of Maize (Zea mays L.) Genotypes Grown in South-western Nigeria. Int. Ann. Sci. 2019, 7, 1–5. [Google Scholar] [CrossRef]
- Ogunyemi, A.M.; Otegbayo, B.O.; Fagbenro, J.A. Effects of NPK and biochar fertilized soil on the proximate composition and mineral evaluation of maize flour. Food Sci. Nutr. 2018, 6, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, S.D.P.; Tolentino, R.G.; Schettino, B. Proximate Composition, Fatty Acid Profile and Mycotoxin Contamination in Several Genotypes of Mexican Maize. Food Nutr. Sci. 2017, 8, 865–872. [Google Scholar] [CrossRef]
- Alamu, E.O.; Olaniyan, B.; Maziya-Dixon, B. Diversifying the Utilization of Maize at Household Level in Zambia: Quality and Consumer Preferences of Maize-Based Snacks. Foods 2021, 10, 750. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, S.; Kumar, R.; Kumar, V.; Roy, D.; Kumar, M. Nutritional and Mineral Composition of Different Genotypes of Normal and High Quality Protein Maize Fodder at Post-Cob Stage. Int. J. Sci. Environ. Technol. 2016, 5, 2719–2727. [Google Scholar]
- Melo-Durán, D.; Pérez, J.F.; González-Ortiz, G.; Villagómez-Estrada, S.; Bedford, M.R.; Graham, H.; Sola-Oriol, D. Maize nutrient composition and the influence of xylanase addition. J. Cereal Sci. 2021, 97, 103155. [Google Scholar] [CrossRef]
- Alamu, E.O.; Maziya-Dixon, B.; Menkir, A.; Olaofe, O.; Irondi, E.A. Effect of Maturity Stages and Roasting Method on the Proximate Composition of orange Maize Hybrids. Glob. Adv. Res. J. Agric. Sci. 2015, 4, 462–468. [Google Scholar]
- Cong, B.; Maxwell, C.; Luck, S.; Vespestad, D.; Richard, K.; Mickelson, J.; Zhong, C. Genotypic and Environmental Impact on Natural Variation of Nutrient Composition in 50 Non-Genetically Modified Commercial Maize Hybrids in North America. J. Agric. Food Chem. 2015, 63, 5321–5334. [Google Scholar] [CrossRef]
- Sibiya, J.; Tongoona, P.; Derera, J.; Rij, N.; Makanda, I. Combining ability analysis for Phaeosphaeria leaf spot resistance and grain yield in tropical advanced maize inbred lines. Field Crops Res. 2011, 120, 86–93. [Google Scholar] [CrossRef]
- Elemosho, A.O.; Irondi, E.A.; Alamu, E.O.; Ajani, E.O.; Maziya-Dixon, B.; Menkir, A. Characterization of Striga-Resistant Yellow-Orange Maize Hybrids for Bioactive, Carbohydrate, and Pasting Properties. Front. Sustain. Food Syst. 2020, 4, 585865. [Google Scholar] [CrossRef]
- Nzuve, F.; Githiri, S.; Mukunya, D.M.; Gethi, J. Analysis of Genotype x Environment Interaction for Grain Yield in Maize Hybrids. J. Agric. Sci. 2013, 5, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Olayiwola, A.O.; Oyediran, G.O. Effect of Soil Types and Phosphorus Fertilizer Interaction on the Growth and Yield of Maize (Zea mays. L.). Int. J. Appl. Agric. Apic. Res. 2012, 8, 82–90. [Google Scholar]
- Njuguna, V.W.; Cheruiyot, E.K.; Mwonga, S.; Rono, J.K. Effect of genotype and environment on grain quality of sorghum (Sorghum bicolor L. Moench) lines evaluated in Kenya. Afr. J. Plant Sci. 2018, 12, 324–330. [Google Scholar] [CrossRef]
- Oh, S.W.; Lee, S.; Park, S.; Lee, S.; Lee, S.; Cho, H.; Chung, Y.; Park, S. Statistical study on the environmental effects on the natural variation of nutritional components in rice genotypes. Food Sci. Nutr. 2019, 7, 163–172. [Google Scholar] [CrossRef]
- Harrigan, G.G.; Stork, L.G.; Riordan, S.G.; Reynolds, T.L.; Ridley, W.P.; Masucci, J.D.; Macisaac, S.; Halls, S.C.; Orth, R.; Smith, R.G.; et al. Impact of Genetics and Environment on Nutritional and Metabolite Components of Maize Grain. J. Agric. Food Chem. 2007, 55, 6177–6185. [Google Scholar] [CrossRef]
- Kabir, S.H.; Das, A.K.; Rahman, M.S.; Singh, S.K.; Morshed, M.; Marma, A.S.H. Effect of genotype on proximate composition and biological yield of maize (Zea mays L.). Arch. Agric. Environ. Sci. 2019, 4, 185–189. [Google Scholar] [CrossRef]
- Miranda, A.; Vásquez-Carrillo, G.; García-Lara, S.; Vicente, F.S.; Torres, J.L.; Ortiz-Islas, S.; Salinas-Moreno, Y.; Palacios-Rojas, N. Influence of genotype and environmental adaptation into the maize grain quality traits for nixtamalization. CyTA J. Food 2013, 11, 54–61. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists, (AOAC) (2005). Official Methods of Analysis. In Association of Official Analytical Chemist; AOAC International: Washington, DC, USA, 2005; Volume 252, pp. 152–154. [Google Scholar]
- FOSS. Manual for Kjeltec System 8400 Distilling and Titration Unit; FOSS: Hilleroed, Denmark, 2003. [Google Scholar]
- Codex Alimentarius. Codex Guidelines on Nutrition Labelling CAC/GL 2-1985 (Rev. 1-1993). Available online: www.micronutrient.org/idpas/pdf/1114CodexNutrLabel.pdf (accessed on 6 July 2022).
- Rouf, S.T.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Suleiman, R.; Rosentrater, K.A.; Bern, C.J. Effects of Deterioration Parameters on Storage of Maize: A Review. J. Nat. Sci. Res. 2013, 3, 147–165. [Google Scholar]
- Reboul, E. Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants 2017, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, C.; Agharandu, U. Proximate and Vitamin Composition of Selected Cereals commonly used for weaning Babies’ Food Preparation in South Eastern Nigeria. J. Biol. Agric. Healthc. 2017, 7, 71–75. [Google Scholar]
- Katsenios, N.; Sparangis, P.; Chanioti, S.; Giannoglou, M.; Leonidakis, D.; Christopoulos, M.V.; Katsaros, G.; Efthimiadou, A. Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece. Agronomy 2021, 11, 357. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Quality Protein Maize for Africa: Closing the Protein Inadequacy Gap in Vulnerable Populations. Adv. Nutr. 2011, 2, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Aliu, A.T.; Haastrup, N.O.; Olatunji, O.A.; Akala, A.O.; Bolaji, O.W. Soil properties, nutritional quality and yield of two maize genotypes using different bio-chars as amendment on metal contaminated soil. J. Res. For. Wildl. Environ. 2020, 12, 106–114. [Google Scholar]
- Ijabadeniyi, A.O.; Adebolu, T.T. The effect of processing methods on the nutritional properties of “ogi” produced from three maize genotypes. J. Food. Agric. Environ. 2005, 3, 108–109. [Google Scholar]
- Maziya-Dixon, B.B.; Kling, J.G.; Okoruwa, A.E. Physical, Chemical and Water Absorption Characteristics of Tropical Maize Hybrids. Afr. Crop Sci. J. 2000, 8, 419–428. [Google Scholar] [CrossRef]
- Ndukwe, O.K.; Edeoga, H.O.; Omosun, G. Varietal Differences in Some Nutritional Composition of Ten Maize (Zea mays L.) Genotypes Grown in Nigeria. Int. J. Acad. Res. Reflect. 2015, 3, 1–11. [Google Scholar]
- Badu-Apraku, B.; Abamu, F.J.; Menkir, A.; Fakorede, M.A.B.; Obeng-Antwi, K.; Thé, C. Genotype by environment interactions in the regional early variety trials in West and Central Africa. Maydica 2003, 48, 93–104. [Google Scholar]
- Scott, M.P.; Edwards, J.W.; Bell, C.P.; Schussler, J.R.; Smith, J.S. Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize genotypes. Maydica 2006, 51, 417–423. [Google Scholar]
Hybrid | MC (g/100 g) | Ash (g/100 g) | Protein (g/100 g) | Fat (g/100 g) | ME (kJ) | TCHO (g/100 g) |
---|---|---|---|---|---|---|
A1706-2 | 8.90 ab | 1.52 a | 9.18 abc | 4.47 a | 380.67 ab | 75.94 abc |
A1736-12 | 8.59 ab | 1.52 a | 8.59 c | 4.55 a | 382.30 a | 76.74 abc |
LY1501-6 | 8.51 b | 1.52 a | 8.92 abc | 4.44 a | 382.09 a | 76.60 abc |
LY1001-18 | 8.79 ab | 1.38 a | 9.07 abc | 4.69 a | 382.76 a | 76.08 abc |
LOCAL VARIETY | 8.95 ab | 1.52 a | 8.46 c | 4.43 a | 380.26 ab | 76.63 abc |
A1702-53 | 8.93 ab | 1.51 a | 8.58 c | 4.43 a | 380.39 ab | 76.53 abc |
A1702-28 | 8.61 ab | 1.50 a | 8.70 abc | 4.32 a | 381.16 ab | 76.86 abc |
LY1409-21 | 9.23 ab | 1.46 a | 8.78 abc | 4.53 a | 379.89 ab | 76.00 abc |
LY1501-8 | 8.67 ab | 1.47 a | 8.53 c | 4.46 a | 381.77 a | 76.86 abc |
LY1312-4 | 8.70 ab | 1.49 a | 8.55 c | 4.33 a | 380.89 ab | 76.92 abc |
LY1302-9 | 8.90 ab | 1.54 a | 8.66 c | 4.30 a | 379.76 ab | 76.60 abc |
LY1312-12 | 8.69 ab | 1.52 a | 8.66 bc | 4.28 a | 380.56 ab | 76.85 abc |
LY1312-11 | 9.21 ab | 1.49 a | 9.04 abc | 4.39 a | 379.15 ab | 75.87 abc |
A1736-13 | 8.98 ab | 1.45 a | 8.67 bc | 4.35 a | 379.99 ab | 76.54 abc |
M1124-31 | 9.16 ab | 1.51 a | 8.90 abc | 4.30 a | 378.85 ab | 76.13 abc |
IFE HYBRID-3 | 8.91 ab | 1.53 a | 8.39 c | 4.27 a | 379.61 ab | 76.89 abc |
LY1409-14 | 9.11 ab | 1.49 a | 8.71 abc | 4.32 a | 379.24 ab | 76.37 abc |
A1702-49 | 8.59 ab | 1.49 a | 8.52 c | 4.28 a | 381.08 ab | 77.12 a |
A1736-6 | 8.78 ab | 1.53 a | 8.30 c | 4.18 a | 379.67 ab | 77.20 a |
LY1501-1 | 8.66 ab | 1.45 a | 8.95 abc | 4.20 a | 380.56 ab | 76.73 abc |
LY1501-9 | 8.66 ab | 1.47 a | 8.58 c | 4.14 a | 380.14 ab | 77.14 a |
LY1501-7 | 8.66 ab | 1.47 a | 8.76 abc | 4.07 a | 379.83 ab | 77.04 ab |
LY1501-5 | 8.87 ab | 1.45 a | 9.21 abc | 4.20 a | 379.71 ab | 76.27 abc |
LY1001-23 | 9.81 ab | 1.43 a | 9.36 abc | 4.14 a | 375.73 ab | 75.26 abc |
IFE HYBRID-4 | 9.73 ab | 1.43 a | 10.03 ab | 4.06 a | 375.65 ab | 74.76 bc |
LY1501-3 | 9.96 a | 1.36 a | 10.06 a | 3.95 a | 374.51 b | 74.68 c |
Minimum | 8.51 | 1.36 | 8.30 | 3.95 | 374.51 | 74.68 |
Maximum | 9.96 | 1.54 | 10.06 | 4.69 | 382.76 | 77.20 |
Mean | 8.97 | 1.48 | 8.88 | 4.31 | 379.77 | 76.37 |
Standard deviation | 0.42 | 0.05 | 0.48 | 0.19 | 2.17 | 0.73 |
Coefficient of Variation | 4.66 | 3.38 | 5.45 | 4.34 | 0.57 | 0.96 |
p level | ** | NS | *** | NS | *** | *** |
MC | Ash | Protein | Fat | ME(KJ) | CHO | ||
---|---|---|---|---|---|---|---|
Source | DF | MS | Mean Squares | Mean Squares | Mean Squares | Mean Squares | Mean Squares |
Hybrid Name | 25 | 1.77 ** | 0.03 ns | 2.77 *** | 0.37 ns | 47.85 *** | 2.28 *** |
Location | 4 | 10.44 *** | 0.189 *** | 44.39 *** | 5.06 *** | 445.10 *** | 35.33 *** |
Season | 1 | 452.00 *** | 1.419 *** | 449.47 *** | 33.24 *** | 10,961.94 *** | 1348.36 *** |
Hybrid Name * Location | 100 | 1.29 ns | 0.03 ns | 1.04 ns | 0.51 ns | 36.00 ns | 2.86 ns |
Hybrid Name * Season | 22 | 0.97 ns | 0.02 ns | 1.25 ns | 0.41 ns | 26.76 ns | 2.49 ns |
Location * Season | 4 | 15.16 *** | 0.44 *** | 16.67 *** | 4.74 *** | 334.51 *** | 27.02 ns |
Hybrid Name * Location * Season | 79 | 0.98 ns | 0.02 ns | 1.09 ns | 0.33 ns | 21.12 ns | 2.84 ns |
MC (g/100 g) | Ash (g/100 g) | Protein (g/100 g) | Fat (g/100 g) | ME (KJ) | TCHO (g/100 g) | |
---|---|---|---|---|---|---|
Saminaka | 8.75 b | 1.55 a | 8.72 c | 4.58 a | 381.70 a | 76.41 b |
Ikenne | 8.97 b | 1.45 c | 7.87 d | 4.50 ab | 380.85 a | 77.21 a |
Ibadan | 8.63 b | 1.51 ab | 9.53 a | 4.18 c | 380.33 a | 76.14 b |
Mokwa | 8.86 b | 1.42 c | 8.96 bc | 4.25 bc | 380.14 a | 76.52 ab |
Zaria | 9.52 a | 1.48 bc | 9.19 ab | 4.04 c | 376.25 b | 75.77 b |
p level (Location) | *** | *** | *** | *** | *** | *** |
Year 1 | 7.88 b | 1.55 a | 7.81 b | 4.59 a | 385.23 a | 78.17 a |
Year 2 | 10.01 a | 1.42 b | 9.90 a | 4.03 b | 374.48 b | 74.65 b |
p level (Season) | *** | *** | *** | *** | *** | *** |
F1 | F2 | F3 | F4 | |
---|---|---|---|---|
%MC | −0.33 | −0.57 | 0.21 | −0.33 |
%Ash | 0.28 | −0.24 | 0.57 | 0.72 |
%Protein | −0.48 | 0.08 | −0.48 | 0.55 |
%Fat | −0.41 | 0.32 | 0.60 | −0.17 |
ME(KJ) | −0.07 | 0.70 | 0.17 | 0.04 |
%TCHO | 0.64 | 0.16 | −0.10 | −0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamu, E.O.; Menkir, A.; Adesokan, M.; Fawole, S.; Maziya-Dixon, B. Assessment of the Effects of Genotype, Location, and Planting Season on the Nutritional Composition and the Metabolizable Energy of Advanced Twenty-Five Maize Hybrids. Int. J. Plant Biol. 2022, 13, 343-351. https://doi.org/10.3390/ijpb13030028
Alamu EO, Menkir A, Adesokan M, Fawole S, Maziya-Dixon B. Assessment of the Effects of Genotype, Location, and Planting Season on the Nutritional Composition and the Metabolizable Energy of Advanced Twenty-Five Maize Hybrids. International Journal of Plant Biology. 2022; 13(3):343-351. https://doi.org/10.3390/ijpb13030028
Chicago/Turabian StyleAlamu, Emmanuel Oladeji, Abebe Menkir, Michael Adesokan, Segun Fawole, and Busie Maziya-Dixon. 2022. "Assessment of the Effects of Genotype, Location, and Planting Season on the Nutritional Composition and the Metabolizable Energy of Advanced Twenty-Five Maize Hybrids" International Journal of Plant Biology 13, no. 3: 343-351. https://doi.org/10.3390/ijpb13030028
APA StyleAlamu, E. O., Menkir, A., Adesokan, M., Fawole, S., & Maziya-Dixon, B. (2022). Assessment of the Effects of Genotype, Location, and Planting Season on the Nutritional Composition and the Metabolizable Energy of Advanced Twenty-Five Maize Hybrids. International Journal of Plant Biology, 13(3), 343-351. https://doi.org/10.3390/ijpb13030028