Identification of Tartary Buckwheat Varieties Suitable for Forage via Nutrient Value Analysis at Different Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Nutritional Analysis
2.2.1. Materials Pretreatment
2.2.2. Ash Content
2.2.3. Crude Protein Content
2.2.4. Crude Fiber Content
2.2.5. Crude Fat Content
2.2.6. Acid or Neutral Detergent Fiber Content
2.2.7. Nitrogen Free Extract Content
2.2.8. Phosphorus Content
2.2.9. Calcium Content
2.2.10. Total Flavonoids Content
2.2.11. Rutin Content
2.3. Relative Feed Value and Relative Forage Quality
2.4. Statistical Analyses
3. Results
3.1. Nutritional Values of Eight Tartary Buckwheat Varieties
3.2. Total Flavonoids and Rutin Contents of Eight Tartary Buckwheat Varieties
3.3. Relative Feed Value and Relative Forage Quality Analysis of Eight Tartary Buckwheat Varieties
3.4. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
XQ-1 | Xiqiao No. 1 |
YQ-1 | Youqiao No. 1 |
M-09125 | Meng-09125 |
CQ-3 | Chuanqiao No. 3 |
ZK-1 | Zhaoku No. 1 |
EWPS | Ewu pedgree selection |
BY | Buyue |
PS-07 | Pedgree selection-07 |
CP | Crude protein |
CF | Crude fiber |
EE | Crude fat content |
ADF | Acid detergent fiber |
NDF | Neutral detergent fiber |
NFE | Nitrogen free extract |
RFV | Relative feed value |
RFQ | Relative forage quality |
DMI | Dry matter intake |
DDM | Digestible dry matter |
TDN | Total digestible nutrients |
References
- Yao, H.; Li, C.; Zhao, H.; Zhao, J.; Chen, H.; Bu, T.; Anhu, W.; Wu, Q. Deep sequencing of the transcriptome reveals distinct flavonoid metabolism features of black tartary buckwheat (Fagopyrum tataricum Garetn.). Prog. Biophys. Mol. Biol. 2017, 124, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Malhotra, N.; Sharma, K. Buckwheat (Fagopyrumsp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet. Resour. Crop Evol. 2020, 67, 1639–1658. [Google Scholar] [CrossRef]
- Aubert, L.; Konradova, D.; Barris, S.; Quinet, M. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. 2021, 172, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.H.; Wang, Y.Q.; Yang, H.B. Effect of exogenous calcium on physiological characteristics of salt tolerance in tartary buckwheat. Biologia 2021, 76, 3621–3630. [Google Scholar] [CrossRef]
- Er, M.; Keles, G. Buckwheat conservation as hay or silage: Agronomic evaluation, nutritive value, conservation quality, and intake by lactating dairy goats. Trop Anim. Health Prod. 2021, 53, 215–222. [Google Scholar] [CrossRef]
- Liu, N.; Zeller, F.J.; Chen, Q.F. The flavonoid content in leaves and inflorescences of the wild perennial Fagopyrum cymosum complex. Genet. Resour. Crop Evol. 2013, 60, 825–838. [Google Scholar] [CrossRef]
- Kalac, P.; Samkova, E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci. 2010, 55, 521–537. [Google Scholar] [CrossRef] [Green Version]
- Eugene, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Song, Y.; Lv, J.; Ma, Z.; Dong, W. The mechanism of alfalfa (Medicago Sativa L.) response to abiotic stress. Plant Growth Regul. 2019, 89, 239–249. [Google Scholar] [CrossRef]
- Jonker, A.; Yu, P. The role of proanthocyanidins complex in structure and nutrition interaction in alfalfa forage. Int. J. Mol. Sci. 2016, 17, 793. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.N.; Thomas, J.B.; Dahlberg, J.; Rhee, S.Y.; Mortimer, J.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J. Exp. Bot. 2022, 73, 646–664. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crop. Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Jonker, A.; Yu, P. The Occurrence, Biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 2017, 18, 1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balota, M.; Payne, W.A.; Veeragom, S.K.; Stewart, B.A.; Rosenow, D.T. Respiration and its relationship to germination, emergence, and early growth under cool temperatures in sorghum. Crop Sci. 2010, 50, 1414–1422. [Google Scholar] [CrossRef]
- Huang, Z.; Dunkerley, D.; Lopez-Vicente, M.; Wu, G.L. Trade-offs of dryland forage production and soil water consumption in a semi-arid area. Agric. Water Manag. 2020, 241, 106349. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K. Use of antibiotics as feed additives: A burning question. Front. Microbiol. 2014, 5, 334. [Google Scholar] [CrossRef] [Green Version]
- Sedej, I.; Sakac, M.; Mandic, A.; Misan, A.; Tumbas, V.; Canadanovic-Brunet, J. Buckwheat (Fagopyrum esculentum moench) grain and fractions: Antioxidant compounds and activities. J. Food Sci. 2012, 77, C954–C959. [Google Scholar] [CrossRef]
- Idowu, A.T.; Olatunde, O.O.; Adekoya, A.E.; Idowu, S. Germination: An alternative source to promote phytonutrients in edible seeds. Food Qual. Saf. 2020, 4, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary buckwheat in human nutrition. Plants 2021, 10, 700. [Google Scholar] [CrossRef]
- Cui, K.; Wang, Q.; Wang, S.; Diao, Q.; Zhang, N. The facilitating effect of tartary buckwheat flavonoids and lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets. Animals 2019, 9, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scuderi, R.A.; Lam, Y.W.; Ebenstein, D.B.; Tacoma, R.; Cersosimo, L.M.; Kraft, J.; Brito, A.F.; Greenwood, S.L. Comparative analysis of the skim milk and milk fat globule membrane proteomes produced by jersey cows grazing pastures with different plant species diversity. J. Dairy Sci. 2020, 103, 7498–7508. [Google Scholar] [CrossRef] [PubMed]
- Amelchanka, S.L.; Kreuzer, M.; Leiber, F. Utility of buckwheat (Fagopyrum esculentum moench) as feed: Effects of forage and grain on in vitro ruminal fermentation and performance of dairy cows. Anim. Feed Sci. Technol. 2010, 155, 111–121. [Google Scholar] [CrossRef]
- Neu, A.E.; Sheaffer, C.C.; Undersander, D.J.; Hall, M.H.; Kniffen, D.M.; Wells, M.S.; Catalano, D.N.; Martinson, K.L. Hay rake-type effect on ash and forage nutritive values of alfalfa hay. Agron. J. 2017, 109, 2163–2171. [Google Scholar] [CrossRef]
- D’Heer, B.; Boever, J.; Vanacker, J.M.; Boucqué, C.V. The filter bag versus the conventional filtration technique for the determination of crude fibre and Van Soest cell wall constituents. J. Anim. Feed Sci. 2000, 9, 513–526. [Google Scholar] [CrossRef]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (randall/soxtec/submersion method): Collaborative study. J. Aoac. Int. 2003, 86, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Prantil, L.R.; Heinze, C.R.; Freeman, L.M. Comparison of carbohydrate content between grain-containing and grain-free dry cat diets and between reported and calculated carbohydrate values. J. Feline Med. Surg. 2018, 20, 349–355. [Google Scholar] [CrossRef]
- Bhandari, S.; Khadayat, K.; Poudel, S.; Shrestha, S.; Shrestha, R.; Devkota, P.; Khanal, S.; Marasini, B.P. Phytochemical analysis of medicinal plants of nepal and their antibacterial and antibiofilm activities against uropathogenic Escherichia coli. BMC Complement. Med. Ther. 2021, 21, 116. [Google Scholar] [CrossRef]
- Kim, J.; Jho, K.H.; Choi, Y.H.; Nam, S.Y. Chemopreventive effect of cactus (opuntia humifusa) extracts: Radical scavenging activity, pro-apoptosis, and anti-Inflammatory effect in human colon (SW480) and breast cancer (MCF7) cells. Food Funct. 2013, 4, 681–688. [Google Scholar] [CrossRef]
- Ward, R.; de Ondarza, M.B. Relative Feed Value (RFV) vs. Relative Forage Quality (RFQ). 6. Available online: https://www.foragelab.com/Media/RFV_vs_RFQ-CVASPerspective.pdf (accessed on 14 February 2008).
- Singer, S.D.; Weselake, R.J.; Acharya, S. Molecular enhancement of alfalfa: Improving quality traits for superior livestock performance and reduced environmental impact. Crop Sci. 2018, 58, 55–71. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Yang, Q.; Gong, X.; Ma, H.; Dang, K.; Chen, G.; Gao, X.; Feng, B. Analysis of flavonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS. Molecules 2019, 24, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaire, G.; Belanger, G. Allometries in plants as drivers of forage nutritive value: A review. Agriculture 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Rohweder, D.A.; Barnes, R.; Jorgensen, N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- Geng, Y.; Ranjitkar, S.; Yan, Q.; He, Z.; Su, B.; Gao, S.; Niu, J.; Bu, D.; Xu, J. Nutrient value of wild fodder species and the implications for improving the diet of mithun (Bos Frontalis) in Dulongjiang area, Yunnan province, China. Plant Divers. 2020, 42, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Turk, M.; Albayrak, S. Effect of harvesting stages on forage yield and quality of different leaf types pea cultivar. Turk. J. Field Crops 2012, 17, 111–114. [Google Scholar]
- Gürsoy, E.; Kaya, A.; Gül, M. Determining the nutrient content, energy, and in vitro true digestibility of some grass forage plants. Emir. J. Food Agric. 2021, 33, 417–422. [Google Scholar] [CrossRef]
- Gallo, A.; Moschini, M.; Cerioli, C.; Masoero, F. Use of principal component analysis to classify forages and predict their calculated energy content. Animal 2013, 7, 930–939. [Google Scholar] [CrossRef] [Green Version]
- Maxin, G.; Graulet, B.; Le Morvan, A.; Picard, F.; Portelli, J.; Andueza, D. Cover crops as alternative forages for ruminants: Nutritive characteristics, in vitro digestibility, methane and ammonia production. Anim. Prod. Sci. 2020, 60, 823–832. [Google Scholar] [CrossRef]
- Lu, L.; Murphy, K.; Baik, B.K. Genotypic variation in nutritional composition of buckwheat groats and husks. Cereal Chem. 2013, 90, 132–137. [Google Scholar] [CrossRef]
- Ruan, J.J.; Zhou, Y.X.; Yan, J.; Zhou, M.L.; Woo, S.H.; Weng, W.F.; Cheng, J.P.; Zhang, K.X. Tartary Buckwheat: An Under-utilized edible and medicinal herb for food and nutritional security. Food Res. Int. 2020. [Google Scholar] [CrossRef]
- Hassan, F.; Roushdy, E.M.; Kishawy, A.; Zaglool, A.W.; Tukur, H.A.; Saadeldin, I.M. Growth performance, antioxidant capacity, lipid-related transcript expression and the economics of broiler chickens fed different levels of rutin. Animals 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiber, F.; Kunz, C.; Kreuzer, M. Influence of different morphological parts of buckwheat (Fagopyrum esculentum) and its major secondary metabolite rutin on rumen fermentation in vitro. Czech J. Anim. Sci. 2012, 57, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Sayed, M.; Islam, M.; Haque, M.; Shah, M.; Ahmed, R.; Siddiqui, M.; Hossain, M. Dietary effects of chitosan and buckwheat (Fagopyrum esculentum) on the performance and serum lipid profile of broiler chicks. SA J. Anim. Sci. 2015, 45, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, R.; Li, Y.M.; Liang, N.; Zhao, Y.; Zhu, H.; He, Z.; Liu, J.; Hao, W.; Jiao, R.; et al. Cholesterol-lowering activity of tartary buckwheat protein. J. Agric. Food Chem. 2017, 65, 1900–1906. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Zhao, Q.; Wang, Y.; Li, C.; Zou, L.; Hu, Y. Effects of tartary buckwheat protein on gut microbiome and plasma metabolite in rats with high-fat diet. Foods 2021, 10, 2457. [Google Scholar] [CrossRef]
Stages | Varieties | Ash | CP | CF | EE | ADF | NDF | NFE | Calcium | Phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
Flowering stage | M-09125 | 15.69 ± 0.09 ab | 5.06 ± 0.14 cd | 10.24 ± 0.18 bcd | 3.95 ± 0.06 a | 26.98 ± 0.26 c | 36.46 ± 0.64 cd | 56.73 ± 0.18 b | 0.29 ± 0.01 cd | 0.38 ± 0.00 b |
XQ-1 | 15.39 ± 0.03 ab | 3.15 ± 0.09 a | 9.99 ± 1.30 bc | 4.06 ± 0.08 ab | 29.03 ± 0.08 e | 41.92 ± 0.83 e | 59.99 ± 0.87 c | 0.34 ± 0.00 b | 0.32 ± 0.00 f | |
BY | 16.30 ± 0.03 ab | 3.74 ± 0.13 b | 8.70 ± 0.60 b | 4.31 ± 0.06 c | 39.07 ± 0.90 f | 37.16 ± 0.16 d | 58.14 ± 0.02 bc | 0.21 ± 0.00 a | 0.22 ± 0.00 a | |
EWPS | 16.27 ± 0.04 ab | 3.95 ± 0.30 b | 13.50 ± 1.00 f | 5.01 ± 0.10 d | 24.72 ± 0.29 a | 34.44 ± 0.49 b | 53.25 ± 1.40 a | 0.34 ± 0.00 c | 0.37 ± 0.00 f | |
ZK-1 | 16.15 ± 0.13 ab | 5.50 ± 0.05 e | 12.31 ± 0.20 ef | 4.15 ± 0.05 bc | 25.59 ± 0.54 b | 37.35 ± 0.89 d | 54.30 ± 0.10 a | 0.31 ± 0.00 e | 0.40 ± 0.00 c | |
PS-07 | 17.49 ± 0.07 a | 4.83 ± 0.20 c | 11.70 ± 1.30 de | 5.39 ± 0.19 e | 24.39 ± 0.33 a | 29.92 ± 0.43 a | 52.25 ± 1.52 a | 0.33 ± 0.00 d | 0.39 ± 0.00 e | |
CQ-3 | 15.14 ± 3.46 ab | 7.08 ± 0.07 f | 6.00 ± 0.75 a | 4.88 ± 0.07 d | 28.10 ± 0.23 d | 33.42 ± 0.63 b | 57.19 ± 2.70 b | 0.35 ± 0.01 cd | 0.38 ± 0.00 g | |
YQ-1 | 14.54 ± 0.03 b | 5.21 ± 0.11 d | 10.48 ± 0.96 cd | 4.06 ± 0.08 ab | 26.62 ± 0.53 c | 35.83 ± 0.80 c | 57.84 ± 0.58 bc | 0.32 ± 0.00 b | 0.31 ± 0.00 d | |
Pustulation stage | M-09125 | 7.70 ± 0.06 a | 5.69 ± 0.15 cd | 10.38 ± 0.53 b | 3.72 ± 0.02 b | 31.76 ± 0. 51 bcd | 47.74 ± 0. 66 e | 65.36 ± 0.45 e | 0.27 ± 0.00 c | 0.31 ± 0.00 b |
XQ-1 | 11.91 ± 0.00 c | 5.93 ± 0.20 d | 9.96 ± 0.39 ab | 4.54 ± 0.04 e | 30.86 ± 0. 66 bc | 39.95 ± 0. 36 b | 59.11 ± 0.25 b | 0.27 ± 0.00 e | 0.34 ± 0.00 b | |
BY | 12.65 ± 0.10 d | 5.53 ± 0.22 c | 12.85 ± 0.85 d | 4.00 ± 0.06 cd | 30.51 ± 0. 20 b | 31.77 ± 0. 31 c | 56.06 ± 0.16 a | 0.27 ± 0.00 d | 0.32 ± 0.00 b | |
EWPS | 9.64 ± 0.06 c | 4.52 ± 0.16 b | 10.84 ± 0.52 bc | 3.70 ± 0.07 b | 28.14 ± 0.05 a | 41.82 ± 0.55 a | 63.91 ± 0.47 d | 0.30 ± 0.00 b | 0.29 ± 0.00 c | |
ZK-1 | 9.84 ± 0.28 c | 4.30 ± 0.11 b | 11.68 ± 0.91 cd | 3.70 ± 0.06 b | 28.89 ± 0. 87 a | 50.04 ± 0.74 f | 63.10 ± 0.45 cd | 0.30 ± 0.00 g | 0.38 ± 0.00 c | |
PS-07 | 8.94 ± 0.02 b | 3.82 ± 0.08 a | 11.15 ± 1.04 bc | 3.39 ± 0.07 a | 33.03 ± 1.63 d | 44.01 ± 0.39 d | 64.92 ± 0.84 e | 0.32 ± 0.00 g | 0.37 ± 0.00 d | |
CQ-3 | 9.12 ± 0.03 b | 3.80 ± 0.20 a | 9.04 ± 0.62 a | 3.91 ± 0.00 c | 33.07 ± 0.20 d | 48.42 ± 0.29 e | 65.99 ± 0.70 f | 0.21 ± 0.00 f | 0.35 ± 0.00 a | |
YQ-1 | 8.96 ± 0.10 b | 3.95 ± 0.11 a | 12.00 ± 0.27 cd | 4.02 ± 0.04 d | 32.12 ± 0.23 cd | 42.07 ± 1.13 c | 62.74 ± 0.09 c | 0.27 ± 0.00 a | 0.23 ± 0.00 b | |
Mature stage | M-09125 | 7.38 ± 0.03 a | 4.73 ± 0.12 c | 8.60 ± 1.07 a | 4.19 ± 0.10 c | 36.57 ± 0.53 c | 39.77 ± 0.84 ab | 68.35 ± 0.50 f | 0.23 ± 0.00 c | 0.16 ± 0.00 a |
XQ-1 | 8.11 ± 0.07 c | 6.96 ± 0.10 f | 11.07 ± 1.97 b | 3.76 ± 0.07 b | 39.07 ± 0.90 d | 44.36 ± 0.72 b | 61.52 ± 0.23 c | 0.22 ± 0.00 b | 0.21 ± 0.00 c | |
BY | 10.38 ± 0.04 f | 5.10 ± 0.06 d | 16.77 ± 0.75 c | 3.42 ± 0.20 a | 33.20 ± 0.32 a | 45.17 ± 0.57 b | 56.95 ± 0.01 a | 0.22 ± 0.01 b | 0.21 ± 0.00 c | |
EWPS | 9.16 ± 0.01 d | 5.79 ± 0.17 e | 12.43 ± 1.11 b | 4.16 ± 0.08 c | 42.02 ± 0.23 e | 42.50 ± 0.16 b | 59.92 ± 0.03 b | 0.30 ± 0.00 e | 0.22 ± 0.01 d | |
ZK-1 | 9.89 ± 0.14 e | 5.15 ± 0.08 d | 11.74 ± 0.34 b | 3.88 ± 0.10 b | 38.99 ± 0.02 d | 43.56 ± 0.97 b | 61.72 ± 0.25 c | 0.28 ± 0.00 d | 0.23 ± 0.00 e | |
PS-07 | 11.76 ± 0.54 g | 5.36 ± 0.22 d | 7.45 ± 1.05 a | 4.72 ± 0.05 d | 35.79 ± 0.45 b | 31.34 ± 1.21 a | 64.18 ± 0.01 d | 0.32 ± 0.01 f | 0.25 ± 0.00 f | |
CQ-3 | 7.77 ± 0.09 bc | 4.08 ± 0.39 b | 8.71 ± 0.67 a | 5.23 ± 0.03 e | 35.61 ± 0.35 b | 41.88 ± 0.29 b | 66.31 ± 0.51 e | 0.30 ± 0.00 e | 0.25 ± 0.00 f | |
YQ-1 | 7.66 ± 0.13 ab | 3.44 ± 0.07 a | 20.20 ± 2.21 d | 3.79 ± 0.09 b | 33.70 ± 0.20 a | 38.84 ± 0.77 ab | 56.55 ± 1.72 a | 0.20 ± 0.00 a | 0.18 ± 0.00 b |
Stages | Varieties | DMI(%DM) | DDM(%DM) | TDN(%DM) | RFV | RFQ |
---|---|---|---|---|---|---|
Flowering stage | M-09125 | 3.69 ± 0.66 bc | 67.88 ± 0.20 d | 62.12 ± 0.19 d | 173.23 ± 3.51 b | 186.29 ± 32.64 b |
XQ-1 | 3.29 ± 0.73 a | 66.29 ± 0.06 b | 60.58 ± 0.06 b | 147.12 ± 2.82 a | 162.20 ± 35.79 a | |
BY | 3.18 ± 0.09 b | 58.47 ± 0.70 a | 53.04 ± 0.68 a | 146.36 ± 1.30 a | 137.16 ± 5.69 a | |
EWPS | 3.93 ± 0.80 d | 69.64 ± 0.22 f | 63.82 ± 0.22 f | 188.13 ± 3.16 c | 204.03 ± 42.21 c | |
ZK-1 | 3.73 ± 0.83 b | 68.96 ± 0.42 e | 63.16 ± 0.40 e | 171.81 ± 4.39 b | 191.89 ± 43.66 b | |
PS-07 | 4.31 ± 0.53 f | 69.90 ± 0.26 f | 64.07 ± 0.25 f | 217.39 ± 3.89 d | 224.54 ± 26.76 d | |
CQ-3 | 3.83 ± 0.39 e | 67.01 ± 0.18 c | 61.28 ± 0.17 c | 186.59 ± 3.08 c | 190.74 ± 19.89 c | |
YQ-1 | 3.71 ± 0.69 c | 68.16 ± 0.41 d | 62.39 ± 0.40 d | 176.99 ± 3.45 b | 188.16 ± 33.88 b | |
Pustulation stage | M-09125 | 2.94 ± 0.73 b | 64.16 ± 0.51 abc | 58.53 ± 0.50 abc | 125.03 ± 0.57 a | 140.05 ± 35.77 a |
XQ-1 | 3.31 ± 0.50 e | 64.68 ± 0.51 bc | 59.21 ± 0.49 bc | 151.03 ± 1.79 d | 159.17 ± 22.94 c | |
BY | 3.82 ± 0.10 f | 65.13 ± 0.15 c | 59.47 ± 0.15 c | 190.72 ± 1.66 e | 184.56 ± 5.38 d | |
EWPS | 3.34 ± 0.80 d | 66.98 ± 0.04 d | 61.24 ± 0.04 d | 149.01 ± 1.86 d | 166.11 ± 40.17 c | |
ZK-1 | 2.97 ± 1.03 a | 66.39 ± 0.68 d | 60.68 ± 0.66 d | 123.43 ± 2.15 a | 146.81 ± 52.23 a | |
PS-07 | 3.04 ± 0.52 c | 63.17 ± 1.27 a | 57.57 ± 1.22 a | 133.53 ± 2.78 b | 142.51 ± 27.03 b | |
CQ-3 | 2.86 ± 0.67 b | 63.14 ± 0.16 a | 57.55 ± 0.15 a | 121.31 ± 0.70 a | 133.69 ± 31.64 a | |
YQ-1 | 3.15 ± 0.52 d | 63.88 ± 0.18 ab | 58.26 ± 0.17 ab | 141.32 ± 4.17 c | 149.06 ± 24.87 c | |
Mature stage | M-09125 | 3.23 ± 0.05 d | 60.41 ± 0.41 c | 54.92 ± 0.40 c | 147.98 ± 3.67 d | 144.04 ± 3.07 d |
XQ-1 | 2.84 ± 0.20 ab | 58.47 ± 0.70 b | 53.04 ± 0.68 b | 122.65 ± 3.27 a | 122.35 ± 7.33 a | |
BY | 2.96 ± 0.56 c | 63.04 ± 0.25 e | 57.45 ± 0.24 e | 129.82 ± 1.62 b | 137.16 ± 5.69 b | |
EWPS | 2.84 ± 0.02 bc | 56.17 ± 0.18 a | 50.83 ± 0.17 a | 122.94 ± 0.67 a | 138.47 ± 26.91 a | |
ZK-1 | 2.88 ± 0.17 ab | 58.52 ± 0.02 b | 53.10 ± 0.02 b | 125.01 ± 2.76 ab | 117.26 ± 0.31 ab | |
PS-07 | 3.71 ± 0.33 e | 61.02 ± 0.35 d | 55.50 ± 0.34 d | 181.28 ± 6.31 e | 124.50 ± 7.36 e | |
CQ-3 | 3.04 ± 0.29 c | 61.16 ± 0.27 d | 55.64 ± 0.26 d | 135.86 ± 1.46 c | 167.28 ± 14.33 c | |
YQ-1 | 3.22 ± 0.29 d | 62.65 ± 0.16 e | 57.07 ± 0.15 e | 150.10 ± 2.99 d | 137.49 ± 13.56 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Huo, M.; Wang, J.; Shi, T.; Li, F.; Zhou, M.; Wang, J.; Liao, Z. Identification of Tartary Buckwheat Varieties Suitable for Forage via Nutrient Value Analysis at Different Growth Stages. Int. J. Plant Biol. 2022, 13, 31-43. https://doi.org/10.3390/ijpb13020005
Zhou M, Huo M, Wang J, Shi T, Li F, Zhou M, Wang J, Liao Z. Identification of Tartary Buckwheat Varieties Suitable for Forage via Nutrient Value Analysis at Different Growth Stages. International Journal of Plant Biology. 2022; 13(2):31-43. https://doi.org/10.3390/ijpb13020005
Chicago/Turabian StyleZhou, Mengjie, Mingxing Huo, Jiankang Wang, Tiantian Shi, Faliang Li, Meiliang Zhou, Junzhen Wang, and Zhiyong Liao. 2022. "Identification of Tartary Buckwheat Varieties Suitable for Forage via Nutrient Value Analysis at Different Growth Stages" International Journal of Plant Biology 13, no. 2: 31-43. https://doi.org/10.3390/ijpb13020005
APA StyleZhou, M., Huo, M., Wang, J., Shi, T., Li, F., Zhou, M., Wang, J., & Liao, Z. (2022). Identification of Tartary Buckwheat Varieties Suitable for Forage via Nutrient Value Analysis at Different Growth Stages. International Journal of Plant Biology, 13(2), 31-43. https://doi.org/10.3390/ijpb13020005