Association between Thyroid Function and Respiratory Distress Syndrome in Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carnielli, V.P.; Cogo, P.E. Surfactant metabolism in neonatal lung diseases. In Neonatology; Springer: Milano, Italy, 2012; pp. 433–440. [Google Scholar]
- Kowlessar, N.M.; Jiang, H.J.; Steiner, C. Hospital Stays for Newborns, 2011: Statistical Brief #163. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2013. [Google Scholar]
- Altman, M.; Vanpée, M.; Cnattingius, S.; Norman, M. Risk factors for acute respiratory morbidity in moderately preterm infants. Paediatr. Perinat. Epidemiol. 2013, 27, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Ballard, P.L.; Hawgood, S.; Liley, H.; Wellenstein, G.; Gonzales, L.W.; Benson, B.; Cordell, B.; White, R.T. Regulation of pulmonary surfactant apoprotein SP 28–36 gene in fetal human lung. Proc. Natl. Acad. Sci. USA 1986, 83, 9527–9531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelson, C.R.; Boggaram, V. Hormonal control of the surfactant system in fetal lung. Annu. Rev. Physiol. 1991, 53, 415–440. [Google Scholar] [CrossRef] [PubMed]
- Ballard, P.L.; Hovey, M.L.; Gonzales, L.K. Thyroid hormone stimulation of phosphatidylcholine synthesis in cultured fetal rabbit lung. J. Clin. Investig. 1984, 74, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Gunes, T.; Koklu, E.; Ozturk, M.A.; Koklu, S.; Cetin, N. Evaluation of serum cortisol levels in a relatively large and mature group of ventilated and nonventilated preterm infants with respiratory distress syndrome. Am. J. Perinatol. 2006, 23, 335–339. [Google Scholar] [CrossRef]
- Warburton, D.; Parton, L.; Buckley, S.; Cosico, L.; Enns, G.; Saluna, T. Combined effects of corticosteroid, thyroid hormones, and β-agonist on surfactant, pulmonary mechanics, and β-receptor binding in fetal lamb lung. Pediatr. Res. 1988, 24, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Group, A.S. Australian collaborative trial of antenatal thyrotropin-releasing hormone (ACTOBAT) for prevention of neonatal respiratory disease. Lancet 1995, 345, 877–882. [Google Scholar] [CrossRef]
- Mohammad, T.; Fariba, G.; Susan, A.; Mohammad, A.; Shahla, A.; Zohreh, K.; Fatemeh, B.; Amin, S. Thyroid function test in pre-term neonates during the first five weeks of life. Int. J. Prev. Med. 2013, 4, 1271–1276. [Google Scholar]
- Ryckman, K.K.; Spracklen, C.N.; Dagle, J.M.; Murray, J.C. Maternal factors and complications of preterm birth associated with neonatal thyroid stimulating hormone. J. Pediatr. Endocrinol. Metab. 2014, 27, 929–938. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimizu, T.; Hosaka, A.; Tokita, A.; Shiga, S.; Yamashiro, Y. Serum free T4 and thyroid stimulating hormone levels in preterm infants and relationship between these levels and respiratory distress syndrome. Pediatr. Int. 2007, 49, 447–451. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Fagman, H. Development of the thyroid gland. Development 2017, 144, 2123–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, D.A.; Polk, D.H. Development of the thyroid. Baillière’s Clin. Endocrinol. Metab. 1989, 3, 627–657. [Google Scholar] [CrossRef]
- Kim, H.-R.; Jung, Y.H.; Choi, C.W.; Chung, H.R.; Kang, M.-J.; Kim, B.I. Thyroid dysfunction in preterm infants born before 32 gestational weeks. BMC Pediatr. 2019, 19, 391. [Google Scholar] [CrossRef]
- LaFranchi, S.H. Thyroid function in preterm/low birth weight infants: Impact on diagnosis and management of thyroid dysfunction. Front. Endocrinol. 2021, 12, 371. [Google Scholar] [CrossRef]
- Armanian, A.-M.; Hashemipour, M.; Esnaashari, A.; Kelishadi, R.; Farajzadegan, Z. Influence of perinatal factors on thyroid stimulating hormone level in cord blood. Adv. Biomed. Res. 2013, 2, 48. [Google Scholar]
- Poyekar, S.; Pratinidhi, S.; Prasad, S.S.; Sardar, Z.S.; Kankariya, B.; Bhole, O. Cord blood thyroid stimulating hormone level-and the influence of perinatal and other factors on it. Dysphagia 2019, 16, 79–82. [Google Scholar]
- Post, M.; Batenburg, J.; Van Golde, L. Effects of cortisol and thyroxine on phosphatidylcholine and phosphatidylglycerol synthesis by adult rat lung alveolar type II cells in primary culture. Biochim. Biophys. Acta 1980, 618, 308–317. [Google Scholar] [CrossRef]
- Gross, I.; Wilson, C.M.; Ingleson, L.D.; Brehier, A.; Rooney, S.A. Fetal lung in organ culture. III. Comparison of dexamethasone, thyroxine, and methylxanthines. J. Appl. Physiol. 1980, 48, 872–877. [Google Scholar] [CrossRef]
- Wu, B.; Kikkawa, Y.; Orzalesi, M.; Motoyama, E.; Kaibara, M.; Zigas, C.; Cook, C. The effect of thyroxine on the maturation of fetal rabbit lungs. Neonatology 1973, 22, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, M.A.; El Gendy, F.M.; Zidan, A.A. Free thyroxine and thyroid-stimulating hormone in preterm neonates with respiratory distress syndrome. Menoufia. Med. J. 2020, 33, 878. [Google Scholar]
- Ataoglu, E.; Cebeci, B.; Oguz, D.; Kurnaz, D.; Buyukkayhan, D. The assessment of thyroid hormone levels in term and preterm infants diagnosed with transient tachypnea of the newborn: A cross-sectional study. Med. Bull. Haseki. 2021, 59, 216–220. [Google Scholar] [CrossRef]
- Crowther, C.A.; Hiller, J.E.; Haslam, R.R.; Robinson, J.S.; Group, A.S. Australian collaborative trial of antenatal thyrotropin-releasing hormone: Adverse effects at 12-month follow-up. Pediatrics 1997, 99, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Braems, G. Fetal hypoxemia on a molecular level: Adaptive changes in the hypothalamic–pituitary–adrenal (HPA) axis and the lungs. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110, S63–S69. [Google Scholar] [CrossRef]
- Chu, A.; Rooney, S. Estrogen stimulation of surfactant synthesis. Pediatr. Pulmonol. 1985, 1 (Suppl. 3), S110–S114. [Google Scholar]
- Engle, M.J.; Langan, S.M.; Sanders, R.L. The effects of insulin and hyperglycemia on surfactant phospholipid synthesis in organotypic cultures of type II pneumocytes. Biochim. Biophys. Acta 1983, 753, 6–13. [Google Scholar] [CrossRef]
Variables | Total (n = 132) | RDS (n = 60) | Control (n = 72) | p Value |
---|---|---|---|---|
Gestational age (weeks) | 30.4 ± 2.5 | 28.9 ± 2.6 | 31.6 ± 1.6 | <0.05 |
Birth weight (gram) | 1527.2 ± 450.5 | 1328.3 ± 503.1 | 1692.9 ± 320.8 | <0.05 |
C-section delivery (%) | 102 (77.3) | 49 (81.7) | 53 (73.6) | 0.303 |
Labor pain (%) | 93 (73.8) | 43 (71.7) | 54 (75) | 0.696 |
Male (%) | 72 (54.5) | 33 (55.0) | 39 (54.2) | 1 |
Multiple gestation (%) | 31 (23) | 11 (18.3) | 20 (27.8) | 0.055 |
Small for gestational age (%) | 4 (3) | 1 (1.7) | 3 (4.2) | 0.63 |
APGAR at 5 min | 7.8 ± 1.6 | 6.9 ± 1.6 | 8.5 ± 1.1 | <0.05 |
Maternal age (years) | 32.7 ± 5.7 | 32.6 ± 6.7 | 32.8 ± 4.8 | 0.789 |
GDM (%) | 19 (14.4) | 7 (11.7) | 12 (16.7) | 0.464 |
Preeclampsia (%) | 29 (22) | 16 (26.7) | 13 (18.1) | 0.292 |
Pathological chorioamnionitis (%) | 53 (44.9) | 20 (37) | 33 (51.6) | 0.139 |
Maternal thyroid disease (%) | 6 (4.5) | 4 (6.7) | 2 (2.8) | 0.41 |
Antenatal steroids (%) | 69 (52.7) | 33 (55.5) | 36 (50.7) | 0.296 |
Variables | RDS (n = 60) | Control (n = 72) | p Value |
---|---|---|---|
BPD | 28 (50.0) | 6 (8.6) | <0.001 |
PDA (Treated) | 15 (26.8) | 2 (2.9) | <0.001 |
Pulmonary hypertension | 5 (8.9) | 1 (1.4) | 0.061 |
NEC | 9 (16.1) | 1 (1.4) | 0.030 |
PVL | 1 (1.8) | 1 (1.4) | 0.693 |
IVH | 0 (0.0) | 1 (1.4) | 0.556 |
ROP with PRP | 5 (8.9) | 1 (1.4) | 0.061 |
Death | 2 (3.6) | 0 (0.0) | 0.196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, Y.; Chang, M.; Lee, B. Association between Thyroid Function and Respiratory Distress Syndrome in Preterm Infants. Pediatr. Rep. 2022, 14, 497-504. https://doi.org/10.3390/pediatric14040058
Kim Y, Kim Y, Chang M, Lee B. Association between Thyroid Function and Respiratory Distress Syndrome in Preterm Infants. Pediatric Reports. 2022; 14(4):497-504. https://doi.org/10.3390/pediatric14040058
Chicago/Turabian StyleKim, Yonghyuk, Youngjin Kim, Meayoung Chang, and Byoungkook Lee. 2022. "Association between Thyroid Function and Respiratory Distress Syndrome in Preterm Infants" Pediatric Reports 14, no. 4: 497-504. https://doi.org/10.3390/pediatric14040058
APA StyleKim, Y., Kim, Y., Chang, M., & Lee, B. (2022). Association between Thyroid Function and Respiratory Distress Syndrome in Preterm Infants. Pediatric Reports, 14(4), 497-504. https://doi.org/10.3390/pediatric14040058