Short-Term Outcome of Rehabilitation Program with Hybrid Assistive Limb after Tendon Lengthening in Patients with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. HAL Intervention
2.3. Assessments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodda, J.; Graham, H. Classification of gait patterns in spastic hemiplegia and spastic diplegia: A basis for a management algorithm. Eur. J. Neurol. 2001, 5, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.K.; Selber, P. Musculoskeletal aspects of cerebral palsy. J. Bone Jt. Surg. Br. 2003, 85, 157–166. [Google Scholar] [CrossRef] [PubMed]
- McGinley, J.L.; Dobson, F.; Ganeshalingam, R.; Shore, B.J.; Rutz, E.; Graham, H.K. Single-event multilevel surgery for children with cerebral palsy: A systematic review. Dev. Med. Child. Neurol. 2012, 54, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galey, S.A.; Lerner, Z.F.; Bulea, T.C.; Zimbler, S.; Damiano, D.L. Effectiveness of surgical and non-surgical management of crouch gait in cerebral palsy: A systematic review. Gait Posture 2017, 54, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Mataki, Y.; Kamada, H.; Mutsuzaki, H.; Shimizu, Y.; Takeuchi, R.; Mizukami, M.; Yoshikawa, K.; Takahashi, K.; Matsuda, M.; Iwasaki, N.; et al. Use of Hybrid Assistive Limb (HAL(®) for a postoperative patient with cerebral palsy: A case report. BMC Res. Notes 2018, 11, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, M.; Iwasaki, N.; Mataki, Y.; Mutsuzaki, H.; Yoshikawa, K.; Takahashi, K.; Enomoto, K.; Sano, K.; Kubota, A.; Nakayama, T.; et al. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Brain Dev. 2018, 40, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Mutsuzaki, H.; Mataki, Y.; Yoshikawa, K.; Matsuda, M.; Enomoto, K.; Sano, K.; Kubota, A.; Mizukami, M.; Iwasaki, N.; et al. Safety and immediate effect of gait training using a Hybrid Assistive Limb in patients with cerebral palsy. J. Phys. Sci. 2018, 30, 1009–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankai, Y. HAL: Hybrid assistive limb based on cybernics. In Robotics Research; Kaneko, M., Nakamura, Y., Eds.; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 66, pp. 25–34. [Google Scholar] [CrossRef]
- Russell, D.J.; Lane, M.; Rosenbaum, P.L.; Avery, L.M. Gross Motor Function Measure (GMFM-66 & GMFM-88) User’s Manual 3rd edition; Mac Keith Press: London, UK, 2021. [Google Scholar]
- Haley, S.M.; Coster, W.J.; Ludlow, L.H.; Haltiwanger, J.T.; Andrellos, P.J. Pediatric Evaluation of Disability Inventory: Development, Standardization, and Administration Manual; New England Medical Centre Inc and PEDI Research Group: Boston, MA, USA, 1992. [Google Scholar]
- Enemark, L.A.; Rasmussen, B.; Christensen, J.R. Enhancing a client-centred practice with the Canadian Occupational Performance Measure. Occup. Ther. Int. 2018, 27, 5956301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, M.; Baptiste, S.; Carswell, A.; McColl, M.A.; Polatajko, H.; Pollock, N. Canadian Occupational Performance Measure; CAOT Publications ACE: Toronto, ON, Canada, 1998. [Google Scholar]
- Cusick, A.; McIntyre, S.; Novak, I.; Lannin, N.; Lowe, K. A comparison of goal attainment scaling and the Canadian occupational performance measure for paediatric rehabilitation research. Pediatric. Rehabil. 2006, 9, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.; Stebbins, J.; Seniorou, M.; Newham, D. Muscle strength and walking ability in diplegic cerebral palsy: Implica-tions for assessment and management. Gait Posture 2011, 33, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Eli, S.; Noémi, D.; Kathleen, M.; Thierry, B.; Rita, Y.; Nadia, B.; Mulcahey, M.J. Functional Gains in Children With Spastic Hemiplegia Following a Tendon Achilles Lengthening Using Computerized Adaptive Testing-A Pilot Study. Child. Neurol Open 2018, 5, 2329048X18811452. [Google Scholar] [CrossRef] [Green Version]
- Vasileios, C.S.; Anastasios, K.; Stamatis, V.; Georgios, G.; Vasileios, K. Improving gait and lower-limb muscle strength in children with cerebral palsy following Selective Percutaneous Myofascial Lengthening and functional physiotherapy. NeuroRehabilitation 2018, 43, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Thompson, N.; Stebbins, J.; Seniorou, M.; Wainwright, A.M.; Newham, D.J.; Theologis, T.N. The use of minimally invasive techniques in multi-level surgery for children with cerebral palsy: Preliminary results. J. Bone Jt. Surg. Br. 2010, 92, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Seniorou, M.; Thompson, N.; Harrington, M.; Theologis, T. Recovery of muscle strength following multi-level orthopaedic surgery in diplegic cerebral palsy. Gait Posture 2007, 26, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Patikas, D.; Wolf, S.I.; Armbrust, P.; Mund, K.; Schuster, W.; Dreher, T.; Döderlein, L. Effects of a postoperative resistive exercise program on the knee extension and flexion torque in children with cerebral palsy: A randomized clinical trial. Arch. Phys. Med. Rehabil. 2006, 87, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Patikas, D.; Wolf, S.I.; Mund, K.; Armbrust, P.; Schuster, W.; Doderlein, L. Effects of a postoperative strength-training program on the walking ability of children with cerebral palsy: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2006, 87, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.S.; Buckon, C.E.; Piatt, J.H.; Aiona, M.D.; Sussman, M.D. A 2-year follow-up of outcomes following orthopedic surgery or selective dorsal rhizotomy in children with spastic diplegia. J. Pediatr. Orthop. B 2004, 13, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Aurich-Schuler, T.; Warken, B.; Graser, J.V.; Ulrich, T.; Borggraefe, I.; Heinen, F.; Meyer-Heim, A.; van Hedel, H.J.A.; Schroeder, A.S.; Schuler, T.A. Practical recommendations for robot-assisted treadmill therapy (Lokomat) in children with cerebral palsy: Indications, goal setting, and clinical implementation within the WHO-ICF framework. Neuropediatrics 2015, 46, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.C.; Costa, T.F.; Andrade, Z.A.; Medrado, A.R. Wound healing-a literature review. An. Bras. Derm. 2016, 91, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Mutsuzaki, H.; Sano, A.; Koseki, K.; Fukaya, T.; Mizukami, M.; Yamazaki, M. Training with Hybrid Assistive Limb for walking function after total knee arthroplasty. J. Orthop Surg Res. 2018, 13, 163. [Google Scholar] [CrossRef] [PubMed]
Patient No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Sex | Male | Female | Male | Female | Male | Male |
Age (years) | 11 | 13 | 17 | 16 | 16 | 24 |
Height (cm) | 131.6 | 151.2 | 163.6 | 144.5 | 152 | 165 |
Weight (kg) | 33.8 | 34.5 | 79.7 | 44.7 | 34.6 | 45.1 |
GMFCS level 1 | I | II | III | IV | IV | IV |
Type of CP 2 | R 3 Hemiplegia | R 3 Hemiplegia | Diplegia | Diplegia | Quadriplegia | Quadriplegia |
Reason for surgery | Equinus | Equinovarus | Equinus | Equinovarus | Crouch | Crouch |
Surgery | ATL 4 | ATL 4, TPTL 5 | ATL 4 | ATL 4, TPTL 5 | HL 6 | HL 6 |
Period of casting (days) | 14 | 35 | 15 | 21 | 28 | 42 |
Period of starting HAL 7 training from surgery (days) | 36 | 55 | 40 | 40 | 62 | 64 |
Period of HAL 7 training (days) | 20 | 23 | 19 | 29 | 23 | 27 |
Period of hospital stay (days) | 58 | 87 | 78 | 82 | 114 | 161 |
Outcome | Measured Period | Average | Median | Standard Deviation | Wilcoxon Signed-Rank Tests p | ||
---|---|---|---|---|---|---|---|
Comparison with Ope Pre | Comparison with Pre HAL | ||||||
GMFM 1 total | % (0–100) | Ope pre | 66.37 | 68.75 | 24.51 | - | - |
Pre-HAL | 59.77 | 62.65 | 30.70 | 0.310 | - | ||
Post-HAL | 65.70 | 65.30 | 26.84 | 0.753 | 0.027 * | ||
Post-HAL after 1 month | 64.00 | 48.10 | 25.55 | 0.345 | 0.043 * | ||
Post-HAL after 2 months | 68.55 | 67.60 | 26.71 | 0.068 | 0.068 | ||
Post-HAL after 3 months | 66.20 | 56.80 | 24.33 | 0.043 * | 0.042 * | ||
GMFM 1 Dimension C (crawl and kneel) | Score (0–42) | Ope pre | 26.33 | 31.50 | 13.89 | - | - |
Pre-HAL | 21.00 | 20.00 | 16.77 | 0.416 | - | ||
Post-HAL | 23.67 | 21.00 | 14.46 | 0.715 | 0.109 | ||
Post-HAL after 1 month | 22.80 | 19.00 | 12.07 | 1.000 | 0.109 | ||
Post-HAL after 2 months | 23.75 | 21.00 | 13.33 | 0.180 | 0.180 | ||
Post-HAL after 3 months | 24.60 | 29.00 | 12.34 | 0.655 | 0.109 | ||
GMFM 1 Dimension D (stand) | Score (0–39) | Ope pre | 18.83 | 17.00 | 13.89 | - | - |
Pre-HAL | 17.50 | 16.50 | 15.31 | 0.599 | - | ||
Post-HAL | 19.50 | 19.00 | 15.75 | 0.686 | 0.026 * | ||
Post-HAL after 1 month | 18.40 | 7.00 | 15.28 | 0.785 | 0.043 * | ||
Post-HAL after 2 months | 22.25 | 21.50 | 15.29 | 0.102 | 0.068 | ||
Post-HAL after 3 months | 20.00 | 10.00 | 14.35 | 0.141 | 0.043 * | ||
GMFM 1 Dimension E (walk, run and jump) | Score (0–72) | Ope pre | 29.67 | 24.50 | 28.65 | - | - |
Pre-HAL | 28.50 | 22.00 | 29.24 | 0.273 | - | ||
Post-HAL | 31.50 | 26.50 | 29.70 | 0.246 | 0.042 * | ||
Post-HAL after 1 month | 29.00 | 6.00 | 31.15 | 0.197 | 0.066 | ||
Post-HAL after 2 months | 35.50 | 35.00 | 31.60 | 0.066 | 0.066 | ||
Post-HAL after 3 months | 30.20 | 8.00 | 30.15 | 0.043 * | 0.043 * | ||
PEDI 2 | Score (0–197) | Ope pre | 125.40 | 123.00 | 46.18 | - | - |
Pre-HAL | 121.40 | 123.00 | 50.17 | 0.180 | - | ||
Post-HAL | 121.60 | 123.00 | 50.35 | 0.317 | 0.317 | ||
Post-HAL after 1 month | 126.20 | 123.00 | 50.13 | 0.593 | 0.066 | ||
Post-HAL after 2 months | 139.50 | 145.00 | 47.51 | 0.180 | 0.102 | ||
Post-HAL after 3 months | 127.80 | 123.00 | 48.47 | 0.180 | 0.068 | ||
COPM 3 performance | Score (1–10) | Pre-HAL | 2.84 | 2.40 | 1.08 | - | - |
Post-HAL | 5.96 | 5.40 | 1.37 | - | 0.043 * | ||
Post-HAL after 1 month | 6.80 | 6.20 | 1.29 | - | 0.043 * | ||
Post-HAL after 2 months | 7.70 | 7.90 | 1.64 | - | 0.068 | ||
Post-HAL after 3 months | 8.40 | 9.20 | 1.72 | - | 0.043 * | ||
COPM 3 satisfaction | Score (1–10) | Pre-HAL | 2.16 | 1.40 | 1.24 | - | - |
Post-HAL | 5.96 | 5.80 | 2.05 | - | 0.043 * | ||
Post-HAL after 1 month | 6.56 | 6.60 | 1.25 | - | 0.043 * | ||
Post-HAL after 2 months | 7.90 | 8.10 | 1.72 | - | 0.068 | ||
Post-HAL after 3 months | 8.04 | 8.60 | 1.58 | - | 0.043 * | ||
Maximum isometric knee extension strength | Nm | Ope pre | 36.10 | 39.50 | 16.64 | - | - |
Pre-HAL | 36.38 | 38.00 | 12.60 | 0.310 | - | ||
Post-HAL | 37.30 | 36.50 | 20.31 | 0.878 | 0.069 | ||
Post-HAL after 1 month | 40.00 | 35.00 | 17.91 | 0.0496 * | 0.046 * | ||
Post-HAL after 2 months | 42.33 | 34.00 | 20.50 | 0.027 * | 0.109 | ||
Post-HAL after 3 months | 40.75 | 41.00 | 14.67 | 0.092 | 0.046 * | ||
10MWT 4 (SWS 5) | Gait speed (m/min) | Ope pre | 54.27 | 42.00 | 20.24 | - | - |
Pre-HAL | 55.93 | 57.60 | 7.52 | - | - | ||
Post-HAL | 64.30 | 64.70 | 5.97 | - | - | ||
Post-HAL after 1 month | 74.10 | 74.10 | 9.90 | - | - | ||
Post-HAL after 2 months | 69.07 | 69.80 | 3.71 | - | - | ||
Post-HAL after 3 months | 84.35 | 84.35 | 32.05 | - | - | ||
Step length (cm) | Ope pre | 48.33 | 46.00 | 7.93 | - | - | |
Pre-HAL | 45.00 | 45.00 | 6.53 | - | - | ||
Post-HAL | 55.00 | 56.00 | 6.98 | - | - | ||
Post-HAL after 1 month | 59.50 | 59.50 | 3.50 | - | - | ||
Post-HAL after 2 months | 56.00 | 59.00 | 4.24 | - | - | ||
Post-HAL after 3 months | 59.50 | 59.50 | 3.50 | - | - | ||
Cadence (step/min) | Ope pre | 108.83 | 95.10 | 22.60 | - | - | |
Pre-HAL | 124.20 | 124.30 | 2.16 | - | - | ||
Post-HAL | 119.10 | 125.00 | 11.22 | - | - | ||
Post-HAL after 1 month | 125.10 | 125.10 | 9.50 | - | - | ||
Post-HAL after 2 months | 123.77 | 124.10 | 4.01 | - | - | ||
Post-HAL after 3 months | 112.50 | 112.50 | 18.30 | - | - | ||
10MWT 4 (MWS 6) | Gait speed (m/min) | Ope pre | 81.60 | 81.60 | 14.40 | - | - |
Pre-HAL | 88.10 | 88.10 | 3.50 | - | - | ||
Post-HAL | 95.75 | 95.75 | 14.05 | - | - | ||
Post-HAL after 1 month | 87.35 | 87.35 | 17.05 | - | - | ||
Post-HAL after 2 months | 103.45 | 103.45 | 24.35 | - | - | ||
Post-HAL after 3 months | 95.85 | 95.85 | 20.55 | - | - | ||
Step length (cm) | Ope pre | 59.50 | 59.50 | 3.50 | - | - | |
Pre-HAL | 61.50 | 61.50 | 5.50 | - | - | ||
Post-HAL | 70.00 | 70.00 | 7.00 | - | - | ||
Post-HAL after 1 month | 70.00 | 70.00 | 7.00 | - | - | ||
Post-HAL after 2 months | 73.00 | 73.00 | 10.00 | - | - | ||
Post-HAL after 3 months | 71.00 | 71.00 | 12.00 | - | - | ||
Cadence (step/min) | Ope pre | 131.00 | 131.00 | 10.00 | - | - | |
Pre-HAL | 146.00 | 146.00 | 19.00 | - | - | ||
Post-HAL | 137.00 | 137.00 | 6.00 | - | - | ||
Post-HAL after 1 month | 124.50 | 124.50 | 11.50 | - | - | ||
Post-HAL after 2 months | 140.00 | 140.00 | 14.00 | - | - | ||
Post-HAL after 3 months | 134.00 | 134.00 | 6.00 | - | - | ||
6MWT (m) 7 | Ope pre | 435.00 | 435.00 | 18.00 | - | - | |
Pre-HAL | 363.50 | 363.50 | 9.50 | - | - | ||
Post-HAL | 415.50 | 415.50 | 25.50 | - | |||
Post-HAL after 1 month | 399.00 | 399.00 | 1.00 | - | - | ||
Post-HAL after 2 months | 489.00 | 489.00 | 39.00 | - | - | ||
Post-HAL after 3 months | 468.50 | 468.50 | 14.50 | - | - | ||
PCI (beat/m) 8 | Ope pre | 0.45 | 0.45 | 0.05 | - | - | |
Pre-HAL | 0.50 | 0.50 | 0.10 | - | - | ||
Post-HAL | 0.65 | 0.65 | 0.05 | - | - | ||
Post-HAL after 1 month | 0.35 | 0.35 | 0.15 | - | - | ||
Post-HAL after 2 months | 0.55 | 0.55 | 0.05 | - | - | ||
Post-HAL after 3 months | 0.50 | 0.50 | 0.10 | - | - |
Patient No. | Measured Period | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
Surgery | ATL 2 and/or TPTL 3 | HL 4 | |||||
ROM 1 (right/left) (°) | Ankle dorsiflexion | Knee extension | |||||
Ope pre | −5/15 | −20/10 | −20/−30 | −10/−10 | −40/−40 | −60/−70 | |
Pre-HAL | 20/5 | 0/10 | 5/5 | 10/0 | −20/−10 | −35/−35 | |
Post-HAL | 20/10 | 5/10 | 10/20 | −10/−10 | −10/−10 | −40/−40 | |
Follow-up | 10/10 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuroda, M.M.; Mutsuzaki, H.; Nakagawa, S.; Yoshikawa, K.; Takahashi, K.; Mataki, Y.; Takeuchi, R.; Iwasaki, N.; Yamazaki, M. Short-Term Outcome of Rehabilitation Program with Hybrid Assistive Limb after Tendon Lengthening in Patients with Cerebral Palsy. Pediatr. Rep. 2022, 14, 505-518. https://doi.org/10.3390/pediatric14040059
Kuroda MM, Mutsuzaki H, Nakagawa S, Yoshikawa K, Takahashi K, Mataki Y, Takeuchi R, Iwasaki N, Yamazaki M. Short-Term Outcome of Rehabilitation Program with Hybrid Assistive Limb after Tendon Lengthening in Patients with Cerebral Palsy. Pediatric Reports. 2022; 14(4):505-518. https://doi.org/10.3390/pediatric14040059
Chicago/Turabian StyleKuroda, Mayumi Matsuda, Hirotaka Mutsuzaki, Shogo Nakagawa, Kenichi Yoshikawa, Kazushi Takahashi, Yuki Mataki, Ryoko Takeuchi, Nobuaki Iwasaki, and Masashi Yamazaki. 2022. "Short-Term Outcome of Rehabilitation Program with Hybrid Assistive Limb after Tendon Lengthening in Patients with Cerebral Palsy" Pediatric Reports 14, no. 4: 505-518. https://doi.org/10.3390/pediatric14040059
APA StyleKuroda, M. M., Mutsuzaki, H., Nakagawa, S., Yoshikawa, K., Takahashi, K., Mataki, Y., Takeuchi, R., Iwasaki, N., & Yamazaki, M. (2022). Short-Term Outcome of Rehabilitation Program with Hybrid Assistive Limb after Tendon Lengthening in Patients with Cerebral Palsy. Pediatric Reports, 14(4), 505-518. https://doi.org/10.3390/pediatric14040059