Biocontrol of Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops Using Streptomyces sp. Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Insect Rearing
2.2. Entomopathogenic Bacteria
2.3. Laboratory Trials
2.3.1. Topical Contact Bioassays
2.3.2. Leaf Dip Bioassays
2.3.3. Repellent Activity
2.4. Field Trials
2.5. Mechanism of Action of Streptomyces sp. Strains
2.5.1. Chitinase Production
2.5.2. Cellulase Production
2.5.3. Protease Production
2.6. Data Analysis
3. Results
3.1. Biochemical and Physiological Characteristics of Streptomyces sp. Strains
3.2. Laboratory Trials
3.3. Repellent Activity
3.4. Field Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vladu, M.; Tudor, V.C.; Mărcuță, L.; Mihai, D.; Tudor, A.D. Study on the production and valorization of sugar beet in the European Union. Roman Agric Res. 2021, 38, 447–455. [Google Scholar] [CrossRef]
- Garcia Gonzalez, M.N.; Björnsson, L. Life Cycle Assessment of the Production of Beet Sugar and Its By-Products. J. Clean. Prod. 2022, 346, 131211. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Xu, D.-C.; Jiang, X.-C.; Zhou, Y.; Cui, J.; Zhang, C.-X.; Chen, D.-F.; Fowler, M.R.; Elliott, M.C.; Scott, N.W.; et al. Genetic Approaches to Sustainable Pest Management in Sugar Beet (Beta Vulgaris). Ann. Appl. Biol. 2008, 152, 143–156. [Google Scholar] [CrossRef]
- Saleh, M.M.E.; Draz, K.A.A.; Mansour, M.A.; Hussein, M.A.; Zawrah, M.F.M. Controlling the Sugar Beet Beetle Cassida Vittata with Entomopathogenic Nematodes. J. Pest Sci. 2009, 82, 289–294. [Google Scholar] [CrossRef]
- Mahmoud, A.; Assem, M.A.; Youssef, K.H.; Meshour, A.A.; El-Imam, G.A.I. Studies on the Main Pests by Using Some Recent Insecticides. In Proceedings of the 4th Vegetable Research Conference, Alexandria, Egypt, 2–4 September 1973; pp. 2–4. [Google Scholar]
- Youssef, A.E. Studies on Certain Insects Attacking Sugar Beet. Ph.D. Thesis, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, Tanta, Egypt, 1994. [Google Scholar]
- Sherief, E.A.; Said, A.A.; Shaheen, F.A.; Fouad, H.A. Population Fluctuation of Certain Pests and Their Associated Predator Insects on Sugar Beet in Sharkia Governorate, Egypt. Egypt. J. Agric. Res. 2013, 91, 139–150. [Google Scholar] [CrossRef]
- Ahmed, A. Studies on the Insects of Sugar Beet in Kafr-El-Sheikh Governorate, Egypt. Ph.D. Thesis, Faculty of Agriculture, Tanta University, Tanta, Egypt, 1987; p. 160. [Google Scholar]
- Hmimina, M.; Bendahou, S. La Casside de la Betterave (Cassida vittata Wild., Col., Chrysomelidae) au Gharb: Cycle de Développement et Stratégie de Lutte. Rev. Marocaine Sci. Agron. Vét. 2015, 3, 12–23. [Google Scholar]
- Bazazo, K.G.I.; Ekram, A.A.; El-Sheikh, M.F. New Record of Entomopathogenic Bacteria Bacillus aryabhattai Strain B8W 22, Isolated from Cassida vittata Vill., and Its Pathogenicity Against This Insect in Egyptian Sugar Beet. Zagazig J. Agric. Res. 2019, 46, 2247–2254. [Google Scholar] [CrossRef]
- Poinar, G.O., Jr. Biology and Taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control; Gaugler, R., Kaya, H.K., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 23–61. [Google Scholar]
- El-Husseini, M.M. Microbial Control of Insect Pests: Is It an Effective and Environmentally Safe Alternative? Effectiveness of Entomopathogenic Viruses. Arab J. Plant Prot. 2006, 24, 162–169. [Google Scholar]
- Tikar, S.N. Susceptibility of Immature Stages of Aedes (Stegomyia) aegypti, Vector of Dengue and Chikungunya, to Insecticides from India. Parasitol. Res. 2008, 103, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L. Insect Pathogenic Bacteria in Integrated Pest Management. Insects 2015, 6, 352–367. [Google Scholar] [CrossRef]
- Arasu, M.V.; Al-Dhabi, N.A.; Saritha, V.; Duraipandiyan, V.; Muthukumar, C.; Kim, S.-J. Antifeedant, Larvicidal, and Growth Inhibitory Bioactivities of Novel Polyketide Metabolite Isolated from Streptomyces sp. AP-123 Against Helicoverpa armigera and Spodoptera litura. BMC Microbiol. 2013, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Qessaoui, R.; Bouharroud, R.; Amarraque, A.; Ajerrar, A.; El Hassan, M.; Chebli, B.; Dadi, M.; Elaini, R.; El Filali, F.; Walters, A.S. Ecological Applications of Pseudomonas as a Biopesticide to Control Two-Spotted Mite Tetranychus urticae: Chitinase and HCN Production. J. Plant Prot. Res. 2017, 57, 409–416. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Sbaghi, M. Applications of Pseudomonas spp., as a Biopesticide to Control Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae). J. Appl. Sci. 2023, 23, 60–70. [Google Scholar] [CrossRef]
- Roobakkumar, A.; Babu, A.; Kumar, D.V.; Sarkar, S. Pseudomonas fluorescens as an Efficient Entomopathogen Against Oligonychus coffeae Nietner (Acari: Tetranychidae) Infesting Tea. J. Entomol. Nematol. 2011, 3, 73–77. [Google Scholar]
- Okongo, R.N.; Puri, A.K.; Wang, Z.; Singh, S.; Permaul, K. Comparative Biocontrol Ability of Chitinases from Bacteria and Recombinant Chitinases from the Thermophilic Fungus Thermomyces lanuginosus. J. Biosci. Bioeng. 2019, 127, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Binod, P.; Sukumaran, R.K.; Shirke, S.V.; Rajput, J.C.; Pandey, A. Evaluation of Fungal Culture Filtrate Containing Chitinase as a Biocontrol Agent Against Helicoverpa armigera. J. Appl. Microbiol. 2007, 103, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Choi, J.Y.; Park, D.H.; Park, M.G.; Wang, M.; Kim, H.J.; Kim, S.H.; Lee, H.Y.; Je, Y.H. Juvenile Hormone Antagonistic Activity of Secondary Metabolites from Streptomyces lactacystinicus and Their Insecticidal Activity Against Plutella xylostella. J. Asia. Pac. Entomol. 2022, 25, 101870. [Google Scholar] [CrossRef]
- Soliman, M.A.W.; Hamza, A.F.; Zahran, N.F.; Bassioni, G. Microbiological Study and Insecticidal Potential of Purified Extract from Streptomyces sp. on the Larvae of Galleria mellonella. J. Plant Dis. Prot. 2021, 128, 1565–1574. [Google Scholar] [CrossRef]
- Kaur, T.; Vasudev, A.; Sohal, S.K.; Manhas, R.K. Insecticidal and Growth Inhibitory Potential of Streptomyces hydrogenans DH16 on Major Pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2014, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, D.; Sakthi, V.; Thajuddin, N.; Panneerselvam, A. Preliminary Evaluation of Anopheles Mosquito Larvicidal Efficacy of Mangrove Actinobacteria. Int. J. Appl. Biol. Pharm. Technol. 2010, 1, 374–381. [Google Scholar]
- Osman, G.; Mostafa, S.; Mohamed, S.H. Antagonistic and Insecticidal Activities of Some Streptomyces Isolates. Pakistan J. Biotechnol. 2007, 4, 65–71. [Google Scholar]
- Al-Kaabi, F.K. Insect Control Using Chitinolytic Soil Actinomycetes as Biocontrol Agents. 2004. Available online: https://scholarworks.uaeu.ac.ae/all_theses/594 (accessed on 24 May 2017).
- Sundarapandian, S.; Sundaram, M.D.; Tholkappian, P.; Balasubramanian, V. Mosquitocidal Properties of Indigenous Fungi and Actinomycetes against Culex quinquefasciatus Say. J. Biol. Control 2002, 16, 89–92. [Google Scholar]
- Hussain, A.A.; Mostafa, S.A.; Ghazal, S.A.; Ibrahim, S.Y. Studies on Antifungal Antibiotic and Bioinsecticidal Activities of Some Actinomycete Isolates. Afr. J. Mycol. Biotechnol. 2002, 10, 63–80. [Google Scholar]
- Amelia-Yap, Z.H.; Low, V.L.; Saeung, A.; Ng, F.L.; Chen, C.D.; Hassandarvish, P.; Azman, A.S. Insecticidal Activities of Streptomyces sp. KSF103 Ethyl Acetate Extract against Medically Important Mosquitoes and Non-Target Organisms. Sci. Rep. 2023, 13, 4. [Google Scholar] [CrossRef]
- Devi, S.; Verma, J.; Sohal, S.K.; Manhas, R.K. Insecticidal Potential of Endophytic Streptomyces sp. against Zeugodacus cucurbitae (Coquillett)(Diptera: Tephritidae) and Biosafety Evaluation. Toxicon 2023, 233, 107246. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, N.; Wang, Y.; Yu, Z. The Insecticidal Activity of Secondary Metabolites Produced by Streptomyces sp. SA61 against Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Microorganisms 2024, 12, 2031. [Google Scholar] [CrossRef]
- Siupka, P.; Hansen, F.T.; Schier, A.; Rocco, S.; Sørensen, T.; Piotrowska Seget, Z. Antifungal Activity and Biosynthetic Potential of New Streptomyces sp. MW-W600-10 Strain Isolated from Coal Mine Water. Int. J. Mol. Sci. 2021, 22, 7441. [Google Scholar] [CrossRef]
- Han, J.W.; Kim, D.Y.; Lee, Y.J.; Choi, Y.R.; Kim, B.; Choi, G.J.; Han, S.W.; Kim, H. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Botrytis cinerea. J. Agric. Food Chem. 2020, 68, 9171–9179. [Google Scholar] [CrossRef]
- Law, J.W.F.; Ser, H.L.; Khan, T.M.; Chuah, L.H.; Pusparajah, P.; Chan, K.G.; Goh, B.H.; Lee, L.H. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Donghua, J.; Qinying, L.; Yiming, S.; Hao, J. Antimicrobial Compound from a Novel Streptomyces termitum Strain ATC-2 against Xanthomonas oryzae Pv. Oryzae. Res. J. Biotechnol. 2013, 8, 66–70. [Google Scholar]
- Mingma, R.; Pathom-aree, W.; Trakulnaleamsai, S.; Thamchaipenet, A.; Duangmal, K. Isolation of Rhizospheric and Root Endophytic Actinomycetes from Leguminosae Plants and Their Activities to Inhibit Soybean Pathogen, Xanthomonas campestris Pv. glycine. World J. Microbiol. Biotechnol. 2014, 30, 271–280. [Google Scholar] [CrossRef]
- Marcellin, C. Monitoring, Caractérisation Moléculaire et Lutte Biologique Contre Spodoptera Frugiperda (Lepidoptera: Noctuidae). Master’s Thesis, Université de Liège, Liège, Belgium, 2019; p. 79. Available online: http://matheo.uliege.be/handle/2268.2/8077 (accessed on 10 January 2020).
- Rammali, S.; Hilali, L.; Dari, K.; Bencharki, B.; Rahim, A.; Timinouni, M.; Gaboune, F.; El Aalaoui, M.; Khattabi, A. Antimicrobial and Antioxidant Activities of Streptomyces Species from Soils of Three Different Cold Sites in the Fez-Meknes Region, Morocco. Sci. Rep. 2022, 12, 17233. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Tamisier, M.; Benamar, S.; Raoult, D.; Fournier, P.E. Cautionary Tale of Using 16S rRNA Gene Sequence Similarity Values in Identification of Human-Associated Bacterial Species. Int. J. Syst. Evol. Microbiol. 2015, 65, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Haque, S.; Singh, H.; Verma, J.; Vibha, K.; Singh, R.; Jawed, A.; Tripathi, C.K.M. Isolation, Screening, and Identification of Novel Isolates of Actinomycetes from India for Antimicrobial Applications. Front. Microbiol. 2016, 7, 1921. [Google Scholar] [CrossRef]
- Rammali, S.; El Aalaoui, M.; Sbaghi, M.; Khadija, D.A.R.I.; Bencharki, B.; Azeroual, A.; Khattabi, A. Insecticidal potential of Streptomyces sp. dichloromethane extracts against the cactus cochineal Dactylopius opuntiae (Cockerell). Not. Sci. Biol. 2023, 13, 11574 . [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Xia, J.; Li, F.; Xia, W.; Liu, S.; Wang, W. The immune strategy and stress response of the Mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen. PLoS ONE 2014, 9, e94477. [Google Scholar] [CrossRef] [PubMed]
- Refaei, E.; Khorchid, A.; El-Aty, A.; Ramadan, G. Efficacy of insecticides against the tortoise beetle, Cassida vittata Vill. (Coleoptera: Chrysomelidae) and the side effects on predators in sugar beet fields. J. Adv. Agric. Res. 2023, 28, 142–150. [Google Scholar] [CrossRef]
- El-Khouly, M.I.; Omar, B.E.A. The efficiency of some insecticides on tortoise beetle, Cassida vittata Vill. inhabiting sugar beet fields. Egypt. J. Agric. Res. 2002, 80, 697–708. [Google Scholar] [CrossRef]
- Pascual-Villalobos, M.J.; Robledo, A. Screening for anti-insect activity in Mediterranean plants. Ind. Crops Prod. 1998, 8, 183–194. [Google Scholar] [CrossRef]
- Abid, A.D.; Saeed, S.; Zaka, S.M.; Shahzad, S.; Ali, M.; Iqbal, M.; Iqbal, N.; Jamal, Z.A. Field evaluation of nucleopolyhedrosis virus and some biorational insecticides against Helicoverpa armigera Hubner (Noctuidae: Lepidoptera). Saudi J. Biol. Sci. 2020, 27, 2106–2110. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.F.; Tilton, E.W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- Cattelan, A.J.; Hartel, P.G.; Fuhrmann, J.J. Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 1999, 63, 1670–1680. [Google Scholar] [CrossRef]
- Miller, G.L.; Blum, R.; Glennon, W.E.; Burton, A.L. Measurement of carboxymethylcellulase activity. Anal. Biochem. 1960, 1, 127–132. [Google Scholar] [CrossRef]
- Jha, B.K.; Gandhi Pragash, M.; Cletus, J.; Raman, G.; Sakthivel, N. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida, and P. mosselii. World J. Microbiol. Biotechnol. 2009, 25, 573–581. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971; p. 333. [Google Scholar]
- Haye, T.; Wyniger, D.; Gariepy, T. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests, Zurich, Switzerland, 20–23 July 2014; pp. 309–314. [Google Scholar]
- El-Hassawy, M.M.; Abou-Donia, S.A.; Abdelmonem, A.E. Comparison between the Effectiveness of Certain Insecticides and Entomopathogenic Nematodes against Tortoise Beetle, Cassida vittata (Vill.) in Sugar Beet Fields and Their Side Effects on Coccinella undecimpunctata. Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control. 2020, 12, 277–287. [Google Scholar] [CrossRef]
- Arasu, M.V.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. In Vitro Antimicrobial Activity of Streptomyces spp. ERI-3 Isolated from Western Ghats Rock Soil (India). J. Mycol. Med. 2009, 19, 22–28. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clement, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Singh, R.B.; Mishra, S. Microbial and Biochemical Aspects of Antibiotic Producing Microorganisms from Soil Samples of Certain Industrial Area of India—An Overview. Open Nutraceuticals J. 2012, 5, 107–112. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Jose, P.A.; Janahiraman, V.; Gandhi, P.I.; Gracy, R.G.; Jalali, S.K.; Kumar, M.S.; Malathi, V. Function and Insecticidal Activity of Bacteria Associated with Papaya Mealybug, Paracoccus Marginatus Williams & Granara de Willink (Hemiptera: Pseudococcidae). Biocontrol Sci. Technol. 2020, 30, 762–778. [Google Scholar] [CrossRef]
- Rahoo, A.M.; Mukhtar, T.; Gowen, S.R.; Rahoo, R.K.; Abro, S.I. Reproductive Potential and Host Searching Ability of Entomopathogenic Nematode, Steinernema feltiae. Pak. J. Zool. 2017, 49, 229–234. [Google Scholar] [CrossRef]
- Ramanujam, B.; Rangeshwaran, R.; Sivakmar, G.; Mohan, M.; Yandigeri, M.S. Management of Insect Pests by Microorganisms. Proc. Indian Natl. Sci. Acad. 2014, 80, 455–471. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Rammali, S.; Bencharki, B.; Sbaghi, M. Efficacy of Biorational Insecticides and Entomopathogenic Fungi for Controlling Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops. Neotrop. Entomol. 2025, 54, 2. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.F.; Abdel-Raheem, M.A. Silver Nano-Particles from Entomopathogenic Fungi on the Tortoise Beetle, Cassida vittata (Coleoptera: Chrysomelidae). Plant Arch. 2020, 20, 5367–5371. [Google Scholar]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect Pathogens as Biological Control Agents: Back to the Future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Stalin, A.; Paulraj, M.G.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A. Biocontrol and Non-Target Effect of Fractions and Compound Isolated from Streptomyces rimosus on the Immature Stages of Filarial Vector Culex quinquefasciatus Say (Diptera: Culicidae) and the Compound Interaction with Acetylcholinesterase (AChE1). Ecotoxicol. Environ. Saf. 2018, 161, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Bream, A.S.; Ghazal, S.A.; El-Aziz, Z.K.A.; Ibrahim, S.Y. Insecticidal Activity of Selected Actinomycetes Strains against the Egyptian Cotton Leaf Worm Spodoptera littoralis (Lepidoptera: Noctuidae). Meded. Fac. Landbouwkd. Toegepaste Biol. Wet. Univ. Gent 2001, 66, 503–544. [Google Scholar]
- Lengyel, K.; Peka, S.; Felfo, G. Comparison of Proteolytic Activities Produced by Entomopathogenic Photorhabdus Bacteria: Strain- and Phase-Dependent Heterogeneity in Composition and Activity of Four Enzymes. Appl. Environ. Microbiol. 2004, 70, 7311–7320. [Google Scholar] [CrossRef]
- Vodovar, N.; Vallenet, D.; Cruveiller, S.; Rouy, Z.; Barbe, V.; Acosta, C.; Cattolico, L.; Jubin, C.; Lajus, A.; Segurens, B.; et al. Complete Genome Sequence of the Entomopathogenic and Metabolically Versatile Soil Bacterium Pseudomonas entomophila. Nat. Biotechnol. 2006, 24, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Broadway, R.M.; Gongora, C.; Kain, W.C.; Sanderson, J.P.; Monroy, J.A.; Bennett, K.C.; Warner, J.B.; Hoffmann, M.P. Novel Chitinolytic Enzymes with Biological Activity against Herbivorous Insects. J. Chem. Ecol. 1998, 24, 985–998. [Google Scholar] [CrossRef]
- Wilson, M.; Henderson, B.; McNab, R. Bacterial Disease Mechanisms: An Introduction to Cellular Microbiology; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Raaijmakers, J.M.; Vlami, M.; De Souza, J.T. Antibiotic Production by Bacterial Biocontrol Agents. Antonie Van Leeuwenhoek 2002, 81, 537–547. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Liu, B.; Zhang, Z.; Yue, T. Biocontrol Activity and Patulin-Removal Effects of Bacillus subtilis, Rhodobacter sphaeroides, and Agrobacterium tumefaciens against Penicillium expansum. J. Appl. Microbiol. 2016, 121, 1384–1393. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Rammali, S.; Kamal, F.Z.; Lefter, R.; Burlui, V.; Alin, C.; Antoneta, D.P.; Otilia, N.; Bogdan, N.; Sbaghi, M. Biocontrol of Phenacoccus solenopsis Tinsley Using Entomopathogenic Fungi and Bacteria. Front. Sustain. Food Syst. 2024, 8, 1444917. [Google Scholar] [CrossRef]
- Aggarwal, N.; Thind, S.K.; Sharma, S. Role of secondary metabolites of Actinomycetes in crop protection. In Plant Growth Promoting Actinobacteria; Subramaniam, G., Ed.; Springer: Singapore, 2016; pp. 99–121. ISBN 978-981-10-0705-7. [Google Scholar]
- Gopalakrishnan, S.; Srinivas, V.; Prasanna, S.L. Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Streptomyces. In Beneficial Microbes in Agro-Ecology; Academic Press: Amsterdam, The Netherlands, 2020; pp. 55–71. [Google Scholar] [CrossRef]
- Schneider, M.; Smagghe, G.; Viñuela, E. Comparative effects of several insect growth regulators and spinosad on the different developmental stages of the endoparasitoid Hyposoter didymator (Thunberg). IOBC/WPRS Bull. 2004, 27, 13–19. [Google Scholar]
Characteristics | Streptomyces sp. Strains | |||
---|---|---|---|---|
E23-2 | E23-3 | E23-9 | E25-12 | |
Assimilation Ribose | - | + | - | + |
Melezitose | + | 3+ | - | - |
Manitol | 3+ | 3+ | - | 3+ |
Trehalose | 3+ | 3+ | 3+ | 3+ |
Cellobiose | 3+ | 3+ | 3+ | 3+ |
Sucrose | 3+ | 3+ | 3+ | 3+ |
Raffinose | 3+ | 3+ | 3+ | 3+ |
Xylose | 3+ | 3+ | + | 3+ |
Melibiose | 3+ | 3+ | - | 3+ |
Mannose | 3+ | 3+ | 3+ | 3+ |
Fructose | 3+ | 2+ | 3+ | 3+ |
Galactose | 3+ | 3+ | 3+ | 3+ |
Maltose | 3+ | 2+ | 2+ | 3+ |
Glucose | 3+ | 3+ | 3+ | 3+ |
pH tolerance 4.63 | - | - | - | - |
5.33 | 2+ | + | + | + |
6.41 | 2+ | 3+ | 2+ | 2+ |
7.31 | 3+ | 3+ | 3+ | 3+ |
8.28 | 3+ | 3+ | 3+ | 3+ |
9.27 | 3+ | 2+ | 3+ | 3+ |
10.03 | 2+ | 2+ | + | 3+ |
NaCl tolerance 1% | 3+ | 3+ | 3+ | 3+ |
2% | 3+ | 3+ | 2+ | 3+ |
3% | 3+ | 3+ | + | 3+ |
4% | 3+ | 3+ | + | 2+ |
5% | 2+ | 3+ | + | 2+ |
7% | 2+ | + | - | + |
10% | - | - | - | - |
Growth on 4 °C | - | - | - | - |
28 °C | 3+ | 3+ | 3+ | 3+ |
37 °C | 3+ | 3+ | 2+ | 2+ |
46 °C | - | - | - | - |
Lab Bioassays | Time (Days) | Concentrations (CFU mL-1) | Streptomyces sp. Strains | Carbosulfan at 0.25 g/L | |||
---|---|---|---|---|---|---|---|
E23-2 | E23-9 | E23-3 | E25-12 | ||||
Topical contact | 1 | 102 | 25.0 ± 5.8 Cb | 22.5 ± 3.8 Db | 17.5 ± 5.0 Dbc | 13.3 ± 4.4 Dc | 60.0 ± 6.7 a |
104 | 34.2 ± 4.5 Cb | 26.7 ± 5.6 Dbc | 21.7 ± 4.2 Dcd | 15.0 ± 5.0 Dd | 60.0 ± 6.7 a | ||
106 | 50.0 ± 10.0 Bab | 40.0 ± 5.0 Cbc | 35.0 ± 7.5 Ccd | 27.5 ± 6.7 Cd | 60.0 ± 6.7 a | ||
108 | 57.5 ± 9.2 ABab | 51.7 ± 7.2 Bab | 47.5 ± 6.3 Bbc | 38.3 ± 7.2 Bc | 60.0 ± 6.7 a | ||
1010 | 68.3 ± 7.5 Aa | 64.2 ± 8.5 Aab | 60.8 ± 9.3 Aab | 50.8 ± 9.3 Ab | 60.0 ± 6.7 a | ||
3 | 102 | 35.0 ± 7.5 Db | 29.2 ± 3.1 Cbc | 25.8 ± 6.5 Cbc | 24.2 ± 9.2 Cc | 85.8 ± 5.6 a | |
104 | 50.0 ± 3.3 Cb | 45.8 ± 5.8 Bbc | 39.2 ± 6.1 Bcd | 36.7 ± 8.3 BCd | 85.8 ± 5.6 a | ||
106 | 64.2 ± 7.8 Bb | 51.7 ± 8.6 Bc | 49.2 ± 10.9 Bc | 41.7 ± 8.6 Bc | 85.8 ± 5.6 a | ||
108 | 83.3 ± 6.7 Aa | 70.8 ± 6.3 Ab | 65.8 ± 8.2 Ab | 60.0 ± 10.0 Ab | 85.8 ± 5.6 a | ||
1010 | 89.2 ± 6.3 Aab | 79.2 ± 3.1 Aab | 76.7 ± 7.8 Abc | 66.7 ± 11.1 Ac | 85.8 ± 5.6 a | ||
8 | 102 | 45.8 ± 9.2 Db | 40.0 ± 3.3 Dbc | 33.3 ± 5.6 Dcd | 27.5 ± 6.3 Cd | 91.7 ± 5.8 a | |
104 | 59.2 ± 3.1 Cb | 52.5 ± 7.5 Cbc | 47.5 ± 6.3 Ccd | 39.2 ± 4.6 BCd | 91.7 ± 5.8 a | ||
106 | 76.7 ± 5.6 Bb | 65.0 ± 6.7 Bc | 56.7 ± 6.7 Bcd | 50.0 ± 8.3 Bd | 91.7 ± 5.8 a | ||
108 | 89.2 ± 3.1 Aab | 82.5 ± 10.4 Aabc | 77.5 ± 9.9 Abc | 73.3 ± 13.9 Ac | 91.7 ± 5.8 a | ||
1010 | 90.0 ± 3.3 Aa | 89.2 ± 3.1 Aa | 85.0 ± 5.8 Aa | 86.7 ± 5.6 Aa | 91.7 ± 5.8 a | ||
Leaf dip | 1 | 102 | 19.2 ± 7.6 Cb | 16.7 ± 6.7 Cb | 11.7 ± 2.8 Dbc | 7.5 ± 3.8 Cc | 54.2 ± 8.2 a |
104 | 28.3 ± 6.9 Cb | 20.8 ± 6.1 Cbc | 15.8 ± 4.9 Dcd | 9.2 ± 6.1 Cd | 54.2 ± 8.2 a | ||
106 | 44.2 ± 9.9 Bab | 34.2 ± 7.5 Bbc | 29.2 ± 11.0 Ccd | 21.6 ± 5.6 Bd | 54.2 ± 8.2 a | ||
108 | 51.7 ± 11.9 ABa | 45.8 ± 10.8 Bab | 41.7 ± 10.3 Bab | 32.5 ± 10.0 Bb | 54.2 ± 8.2 a | ||
1010 | 62.5 ± 10.0 Aab | 60.0 ± 11.7 Aab | 55.0 ± 10.8 Aab | 45.0 ± 12.5 Ab | 54.2 ± 8.2 a | ||
3 | 102 | 29.2 ± 9.3 Db | 23.3 ± 5.6 Cbc | 20.0 ± 6.7 Cbc | 18.3 ± 6.9 Cc | 80.0 ± 5.0 a | |
104 | 43.3 ± 6.7 Cb | 40.0 ± 6.7 Bbc | 33.3 ± 8.9 BCbc | 30.8 ± 10.8 BCc | 80.0 ± 5.0 a | ||
106 | 58.3 ± 8.9 Bb | 45.8 ± 10.1 Bbc | 44.2 ± 15.8 Bbc | 35.8 ± 11.5 Bc | 80.0 ± 5.0 a | ||
108 | 77.5 ± 5.8 Aa | 65.8 ± 10.1 Ab | 69.0 ± 8.3 Ab | 54.2 ± 13.2 Ab | 80.0 ± 5.0 a | ||
1010 | 83.3 ± 8.9 Aa | 73.3 ± 5.6 Aab | 71.7 ± 8.3 Aab | 60.8 ± 14.4 Ab | 80.0 ± 5.0 a | ||
8 | 102 | 40.0 ± 10.0 Db | 34.2 ± 5.8 Cbc | 27.5 ± 5.4 Ccd | 21.7 ± 8.6 Cd | 83.3 ± 11.1 a | |
104 | 53.3 ± 5.6 Cb | 46.7 ± 10.6 BCb | 41.7 ± 10.0 Bbc | 33.3 ± 7.2 BCc | 83.3 ± 11.1 a | ||
106 | 70.8 ± 6.1 Bab | 59.2 ± 9.3 Bbc | 50.8 ± 4.7 Bcd | 44.2 ± 12.2 Bd | 83.3 ± 11.1 a | ||
108 | 83.3 ± 7.2 Aa | 76.7 ± 12.2 Aa | 71.7 ± 10.0 Aa | 67.5 ± 17.5 Aa | 83.3 ± 11.1 a | ||
1010 | 84.2 ± 5.8 Aa | 83.3 ± 7.2 Aa | 79.2 ± 3.1 Aa | 80.8 ± 7.8 Aa | 83.3 ± 11.1 a |
Lab Bioassays | Time (Days) | Concentrations (CFU mL−1) | Streptomyces sp. Strains | Carbosulfan at 0.25 g/L | |||
---|---|---|---|---|---|---|---|
E23-2 | E23-9 | E23-3 | E25-12 | ||||
Topical contact | 1 | 102 | 15.8 ± 5.8 Cb | 14.2 ± 4.9 Cb | 9.2 ± 3.1 Dbc | 4.2 ± 5.6 Cc | 55.8 ± 8.2 a |
104 | 25.8 ± 6.5 Cb | 19.2 ± 4.6 Cbc | 10.8 ± 1.5 Dcd | 5.8 ± 5.8 Cd | 55.8 ± 8.2 a | ||
106 | 40.8 ± 7.8 Bb | 34.2 ± 9.2 Bbc | 25.0 ± 6.7 Ccd | 15.8 ± 4.9 Bd | 55.8 ± 8.2 a | ||
108 | 53.3 ± 8.9 Aab | 42.5 ± 6.7 Bbc | 37.5 ± 6.3 Bcd | 28.3 ± 7.2 Ad | 55.8 ± 8.2 a | ||
1010 | 60.8 ± 6.1 Aa | 56.7 ± 13.9 Aa | 50.8 ± 9.3 Aa | 36.7 ± 10.0 Ab | 55.8 ± 8.2 a | ||
3 | 102 | 25.8 ± 6.5 Db | 20.8 ± 4.6 Cb | 19.2 ± 3.1 Dbc | 11.7 ± 5.6 Dc | 75.8 ± 7.9 a | |
104 | 42.5 ± 9.2 Cb | 37.5 ± 6.3 Bb | 31.7 ± 8.6 Cbc | 22.5 ± 6.3 Cc | 75.8 ± 7.9 a | ||
106 | 56.7 ± 7.2 Bb | 46.7 ± 10.6 Bbc | 38.3 ± 11.4 Ccd | 30.0 ± 6.7 Cd | 75.8 ± 7.9 a | ||
108 | 74.2 ± 8.4 Aa | 60.0 ± 5.0 Ab | 53.3 ± 6.1 Bb | 41.7 ± 5.6 Bc | 75.8 ± 7.9 a | ||
1010 | 82.5 ± 7.5 Aab | 68.3 ± 6.9 Abc | 64.2 ± 6.5 Acd | 53.3 ± 8.3 Ad | 75.8 ± 7.9 a | ||
8 | 102 | 35.0 ± 9.2 Db | 33.3 ± 9.4 Cb | 27.5 ± 6.3 Cbc | 19.2 ± 4.6 Ec | 88.3 ± 7.2 a | |
104 | 52.5 ± 10.4 Cb | 45.0 ± 8.3 Bbc | 38.3 ± 5.8 Bcd | 28.3 ± 5.6 Dd | 88.3 ± 7.2 a | ||
106 | 68.3 ± 5.8 Bb | 55.8 ± 5.8 Bc | 47.5 ± 6.7 Bcd | 38.3 ± 5.6 Cd | 88.3 ± 7.2 a | ||
108 | 85.8 ± 8.9 Aab | 74.2 ± 10.8 Abc | 65.8 ± 7.5 Acd | 55.0 ± 7.5 Bd | 88.3 ± 7.2 a | ||
1010 | 88.3 ± 5.6 Aa | 82.5 ± 6.3 Aa | 73.3 ± 6.7 Ab | 66.7 ± 4.4 Ab | 88.3 ± 7.2 a | ||
Leaf dip | 1 | 102 | 10.0 ± 3.3 Cb | 8.3 ± 6.9 Cb | 3.3 ± 5.0 Db | 1.7 ± 2.8 Bb | 50.0 ± 10.0 a |
104 | 20.0 ± 10.0 Cb | 13.3 ± 7.2 Cbc | 5.0 ± 5.0 Dcd | 2.5 ± 3.8 Bd | 50.0 ± 10.0 a | ||
106 | 35.0 ± 10.0 Bb | 28.3 ± 11.7 Bbc | 19.2 ± 9.3 Ccd | 10.0 ± 6.7 Bd | 50.0 ± 10.0 a | ||
108 | 47.5 ± 12.1 ABa | 36.7 ± 8.3 ABab | 31.7 ± 8.6 Bbc | 22.5 ± 8.8 Ac | 50.0 ± 10.0 a | ||
1010 | 55.0 ± 8.3 Aa | 50.8 ± 16.0 Aa | 45.0 ± 11.7 Aab | 30.8 ± 12.6 Ab | 50.0 ± 10.0 a | ||
3 | 102 | 20.0 ± 10.0 Cb | 15.0 ± 7.5 Dbc | 13.3 ± 4.4 Cbc | 5.8 ± 5.8 Dc | 67.5 ± 11.7 a | |
104 | 36.7 ± 12.2 Bb | 31.7 ± 7.2 Cb | 25.8 ± 10.8 BCbc | 16.7 ± 7.8 CDc | 67.5 ± 11.7 a | ||
106 | 50.8 ± 7.6 Bb | 40.8 ± 14.3 BCbc | 32.5 ± 14.6 Bcd | 24.2 ± 10.8 BCd | 67.5 ± 11.7 a | ||
108 | 68.3 ± 10.6 Aab | 54.2 ± 7.5 ABbc | 47.5 ± 9.2 Acd | 35.8 ± 6.5 ABd | 67.5 ± 11.7 a | ||
1010 | 76.7 ± 10.0 Aab | 62.5 ± 9.6 Ab | 58.3 ± 6.9 Abc | 47.5 ± 11.3 Ac | 67.5 ± 11.7 a | ||
8 | 102 | 29.2 ± 9.3 Db | 27.5 ± 9.6 Cb | 22.5 ± 7.5 Cbc | 13.3 ± 5.6 Dc | 80.8 ± 10.8 a | |
104 | 47.5 ± 12.9 Cb | 40.0 ± 11.7 BCb | 33.3 ± 9.4 BCbc | 22.5 ± 7.5 Dc | 80.8 ± 10.8 a | ||
106 | 62.5 ± 7.5 Bb | 51.7 ± 7.2 Bbc | 41.7 ± 8.3 Bcd | 33.3 ± 8.3 Cd | 80.8 ± 10.8 a | ||
108 | 79.2 ± 11.1 Aa | 69.2 ± 11.0 Aab | 60.8 ± 9.3 Abc | 50.0 ± 8.3 Bc | 80.8 ± 10.8 a | ||
1010 | 81.7 ± 5.6 Aa | 77.5 ± 6.7 Aab | 68.3 ± 7.2 Abc | 61.7 ± 5.6 Ac | 80.8 ± 10.8 a |
Lab Bioassays | Streptomyces sp. Strains | DAT | Slope ± SE | Z | LC%50 | Chi-Test (χ2) Sig (df = 58) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Larva | Adult | Larva | Adult | Larva | Adult | Larva | Adult | |||
Topical contact | E23-2 | 1 | 0.1 ± 0.02 | 0.2 ± 0.02 | 7.6 | 8.3 | 3.6 × 106 | 7.0 × 107 | 23.3 | 21.7 |
3 | 0.2 ± 0.02 | 0.2 ± 0.02 | 10.1 | 10.0 | 8.7 × 103 | 1.2 × 105 | 29.3 | 25.2 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.9 | 10.0 | 323.5 | 5.1 × 103 | 20.8 | 34.4 | ||
E23-9 | 1 | 0.1 ± 0.02 | 0.2 ± 0.02 | 7.6 | 7.9 | 4.9 × 107 | 9.8 × 108 | 16.4 | 27.2 | |
3 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.6 | 8.1 | 1.3 × 105 | 3.9 × 106 | 15.8 | 21.5 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 9.2 | 8.9 | 3.5 × 103 | 4.7 × 104 | 22.6 | 25.9 | ||
E23-3 | 1 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.0 | 8.5 | 2.5 × 108 | 7.2 × 109 | 18.7 | 19.1 | |
3 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.8 | 7.8 | 6.0 × 105 | 3.8 × 107 | 27.2 | 21.1 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 9.3 | 8.2 | 2.8 × 104 | 8.2 × 105 | 19.4 | 18.0 | ||
E25-12 | 1 | 0.2 ± 0.02 | 0.2 ± 0.03 | 7.4 | 7.6 | 9.4 × 109 | 3.3 × 1011 | 22.0 | 36.7 | |
3 | 0.1 ± 0.02 | 0.2 ± 0.02 | 7.5 | 7.6 | 6.2 × 106 | 2.4 × 109 | 34.9 | 20.6 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 10.5 | 8.5 | 1.7 × 105 | 2.7 × 107 | 31.3 | 13.6 | ||
Leaf dip | E23-2 | 1 | 0.2 ± 0.02 | 0.2 ± 0.02 | 7.7 | 8.5 | 4.3 × 107 | 5.6 × 108 | 33.8 | 36.8 |
3 | 0.2 ± 0.02 | 0.2 ± 0.02 | 9.9 | 9.9 | 5.9 × 104 | 8.6 × 105 | 35.8 | 42.3 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.6 | 9.5 | 1.9 × 103 | 3.1 × 104 | 25.6 | 39.5 | ||
E23-9 | 1 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.0 | 8.3 | 3.8 × 108 | 6.3 × 109 | 31.5 | 53.0 | |
3 | 0.2 ± 0.02 | 0.2 ± 0.02 | 8.6 | 8.2 | 1.1 × 106 | 4.0 × 107 | 23.7 | 36.5 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 9.0 | 8.9 | 2.4 × 104 | 3.1 × 105 | 34.2 | 35.2 | ||
E23-3 | 1 | 0.2 ± 0.02 | 0.2 ± 0.03 | 8.3 | 9.0 | 1.9 × 109 | 2.1 × 1010 | 27.8 | 46.8 | |
3 | 0.2 ± 0.02 | 0.2 ± 0.02 | 9.0 | 8.0 | 4.7 × 106 | 3.7 × 108 | 37.5 | 33.9 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 9.2 | 8.2 | 2.2 × 105 | 6.5 × 106 | 21.2 | 27.1 | ||
E25-12 | 1 | 0.2 ± 0.02 | 0.2 ± 0.03 | 7.9 | 7.5 | 4.6 × 1010 | 9.2 × 1011 | 49.7 | 48.0 | |
3 | 0.1 ± 0.02 | 0.2 ± 0.02 | 7.6 | 8.0 | 7.4 × 107 | 1.4 × 1010 | 50.0 | 37.4 | ||
8 | 0.2 ± 0.02 | 0.2 ± 0.02 | 10.4 | 8.8 | 1.1 × 106 | 1.7 × 108 | 48.8 | 21.8 |
Lab Bioassays | Survival Analysis | Streptomyces sp. Strains | N c | Concentrations (CFU mL−1) | ||||
---|---|---|---|---|---|---|---|---|
102 | 104 | 106 | 108 | 1010 | ||||
Topical contact | Mortality (%) a | E23-2 | 120 | 35.3 | 47.8 | 63.6 | 76.7 | 82.5 |
E23-9 | 120 | 30.6 | 41.7 | 52.2 | 68.3 | 77.5 | ||
E23-3 | 120 | 25.6 | 36.1 | 46.9 | 63.6 | 74.2 | ||
E25-12 | 120 | 21.7 | 30.3 | 39.7 | 57.2 | 68.1 | ||
Mean survival time ± SE b | E23-2 | 120 | 5.1 ± 0.1 | 4.8 ± 0.1 | 4.4 ± 0.1 | 4.0 ± 0.1 | 3.8 ± 0.1 | |
E23-9 | 120 | 5.2 ± 0.1 | 4.9 ± 0.1 | 4.7 ± 0.1 | 4.3 ± 0.1 | 4.0 ± 0.1 | ||
E23-3 | 120 | 5.3 ± 0.8 | 5.1 ± 0.1 | 4.8 ± 0.1 | 4.4 ± 0.1 | 4.1 ± 0.1 | ||
E25-12 | 120 | 5.4 ± 0.1 | 5.2 ± 0.1 | 5.0 ± 0.1 | 4.6 ± 1.1 | 4.3 ± 0.1 | ||
LT50 (95% CI) | E23-2 | 120 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.2 | 3.0 ± 0.2 | 3.0 ± 0.2 | |
E23-9 | 120 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.1 | 3.0 ± 0.2 | ||
E23-3 | 120 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.3 | 6.0 ± 0.2 | 3.0 ± 0.2 | ||
E25-12 | 120 | 6.0 ± 0.0 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.1 | ||
Leaf dip | Mortality (%) a | E23-2 | 120 | 29.4 | 41.7 | 57.8 | 70.8 | 76.7 |
E23-9 | 120 | 24.7 | 35.8 | 46.4 | 60.6 | 72.2 | ||
E23-3 | 120 | 19.7 | 30.3 | 41.4 | 57.8 | 68.6 | ||
E25-12 | 120 | 15.2 | 24.4 | 33.9 | 51.4 | 62.2 | ||
Mean survival time ± SE b | E23-2 | 120 | 5.3 ± 0.1 | 4.9 ± 0.1 | 4.5 ± 0.1 | 4.2 ± 0.1 | 4.0 ± 0.1 | |
E23-9 | 120 | 5.4 ± 0.1 | 5.1 ± 0.1 | 4.8 ± 0.1 | 4.5 ± 0.1 | 4.1 ± 0.1 | ||
E23-3 | 120 | 5.5 ± 0.1 | 5.3 ± 0.1 | 4.9 ± 0.1 | 4.5 ± 0.1 | 4.2 ± 0.1 | ||
E25-12 | 120 | 5.6 ± 0.7 | 5.4 ± 0.1 | 5.1 ± 0.1 | 4.7 ± 0.1 | 4.5 ± 0.1 | ||
LT50 (95% CI) | E23-2 | 120 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.1 | 3.0 ± 0.2 | |
E23-9 | 120 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.2 | 6.0 ± 0.1 | ||
E23-3 | 120 | 6.0 ± 0.0 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.1 | ||
E25-12 | 120 | 6.0 ± 0.0 | 6.0 ± 0.0 | 6.0 ± 0.3 | 6.0 ± 0.2 | 6.0 ± 0.1 |
Treatments | Mean Density (± SEM) at | p | |||
---|---|---|---|---|---|
1 d-Pre-trt | 3 DAT | 6 DAT | 12 DAT | ||
E23-2 at 108 CFU mL−1 | 210.8 ± 0.6 ABa | 52.3 ± 2.1 Cb | 39.3 ± 2.3 Cc | 29.3 ± 2.3 Dd | p < 0.0001 |
E23-2 at 1010 CFU mL−1 | 210.3 ± 0.8 ABa | 45.2 ± 2.5 Db | 32.2 ± 0.8 Dc | 22.2 ± 0.8 Ed | p < 0.0001 |
E23-9 at 108 CFU mL−1 | 214.0 ± 3.9 Aa | 62.3 ± 2.9 Bb | 48.3 ± 2.9 Bc | 45.5 ± 2.3 Bc | p < 0.0001 |
E23-9 at 1010 CFU mL−1 | 210.7 ± 2.2 ABa | 55.2 ± 2.4 Cb | 41.5 ± 1.1 Cc | 39.8 ± 1.0 Cc | p < 0.0001 |
Carbosulfan at 0.25 g/L | 210.3 ± 3.3 ABa | 46.0 ± 2.2 Db | 33.3 ± 1.8 Dc | 31.2 ± 1.3 Dc | p < 0.0001 |
Control | 210.8 ± 1.7 ABc | 215.7 ± 1.4 Ab | 219.0 ± 2.2 Ab | 224.7 ± 2.9 Aa | p < 0.0001 |
Statistical analysis | F = 9.6, df = 5, 30 p < 0.0001 | F = 5195.8, df = 5, 30 p < 0.0001 | F = 8562.0, df = 5, 30 p < 0.0001 | F = 10,189.6, df = 5, 30 p < 0.0001 |
Treatments | Mean Density (± SEM) at | p | |||
---|---|---|---|---|---|
1 d-Pre-trt | 3 DAT | 6 DAT | 12 DAT | ||
E23-2 at 108 CFU mL−1 | 181.5 ± 34.7 Aa | 55.7 ± 1.2 Cb | 42.3 ± 2.3 Cb | 30.0 ± 1.7 Eb | p < 0.0001 |
E23-2 at 1010 CFU mL−1 | 185.8 ± 37.6 Aa | 47.7 ± 2.7 Db | 35.5 ± 1.4 Db | 23.7 ± 1.2 Fb | p < 0.0001 |
E23-9 at 108 CFU mL−1 | 210.5 ± 3.7 Aa | 63.3 ± 2.3 Bb | 50.2 ± 2.9 Bc | 47.0 ± 1.7 Bc | p < 0.0001 |
E23-9 at 1010 CFU mL−1 | 207.5 ± 3.7 Aa | 56.3 ± 2.3 Cb | 42.8 ± 1.2 Cc | 40.7 ± 1.2 Cc | p < 0.0001 |
Carbosulfan at 0.25 g/L | 203.2 ± 3.8 Aa | 48.3 ± 2.5 Db | 35.8 ± 1.2 Dc | 33.7 ± 1.2 Dc | p < 0.0001 |
Control | 209.7 ± 1.9 Ac | 214.7 ± 1.9 Ab | 217.0 ± 1.8 Ab | 223.3 ± 2.3 Aa | p < 0.0001 |
Statistical analysis | F = 2.2, df = 5, 30 p < 0.0001 | F = 4923.2, df = 5, 30 p < 0.0001 | F = 8673.9, df = 5, 30 p < 0.0001 | F = 14,283.4, df = 5, 30 p < 0.0001 |
Treatments | Mean % Reduction (± SEM) of | |
---|---|---|
Larva | Adult | |
E23-2 at 108 CFU mL−1 | 84.8 ± 1.2 Ba | 81.9 ± 3.6 Ba |
E23-2 at 1010 CFU mL−1 | 88.6 ± 0.4 Aa | 85.9 ± 3.0 Aa |
E23-9 at 108 CFU mL−1 | 77.4 ± 0.9 Da | 76.2 ± 0.6 Cb |
E23-9 at 1010 CFU mL−1 | 79.9 ± 0.6 Ca | 79.0 ± 0.7 BCa |
Carbosulfan at 0.25 g/L | 84.1 ± 0.9 Ba | 82.3 ± 0.8 Bb |
Statistical analysis | F= 169.3, df = 4, 25, p < 0.0001 | F = 18.9, df = 4, 25, p < 0.0001 |
Streptomyces sp. Strains | Chitinase Production | Cellulase Production | Protease Production |
---|---|---|---|
E23-2 | + | + | + |
E23-3 | + | + | + |
E23-9 | + | + | + |
E25-12 | + | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Aalaoui, M.; Rammali, S.; Kamal, F.Z.; Bencharki, B.; Ciobică, A.; Hogas, M.; Novac, B.; Sbaghi, M. Biocontrol of Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops Using Streptomyces sp. Strains. Microbiol. Res. 2025, 16, 57. https://doi.org/10.3390/microbiolres16030057
El Aalaoui M, Rammali S, Kamal FZ, Bencharki B, Ciobică A, Hogas M, Novac B, Sbaghi M. Biocontrol of Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops Using Streptomyces sp. Strains. Microbiology Research. 2025; 16(3):57. https://doi.org/10.3390/microbiolres16030057
Chicago/Turabian StyleEl Aalaoui, Mohamed, Said Rammali, Fatima Zahra Kamal, Bouchaib Bencharki, Alin Ciobică, Mihai Hogas, Bogdan Novac, and Mohamed Sbaghi. 2025. "Biocontrol of Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops Using Streptomyces sp. Strains" Microbiology Research 16, no. 3: 57. https://doi.org/10.3390/microbiolres16030057
APA StyleEl Aalaoui, M., Rammali, S., Kamal, F. Z., Bencharki, B., Ciobică, A., Hogas, M., Novac, B., & Sbaghi, M. (2025). Biocontrol of Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops Using Streptomyces sp. Strains. Microbiology Research, 16(3), 57. https://doi.org/10.3390/microbiolres16030057