The Influence of Potable Water, Lactic and Acetic Acids on the Microbiology of Wound Areas on Impala (Aepyceros melampus) Carcasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling in Relation to Treatment
2.2. Sample Preparation and Analysis
2.3. Data Analysis
3. Results
3.1. Characterization of Wound Areas
3.2. Microbiological Analysis
3.2.1. Total Plate Count
3.2.2. Coliforms
3.2.3. Escherichia coli
3.2.4. Salmonella
3.3. Meat Traits, Carcasses’ pH and Temperature
4. Discussion
4.1. Effect of Treatment Methods on Microbiological Counts
4.2. Carcasses’ pH and Temperature
4.3. Meat Safety
4.4. Limitation and Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Merwe, M.; Hoffman, L.C.; Jooste, P.J.; Calitz, F.J. The hygiene practices of three systems of game meat production in South Africa in terms of animal class and health compliance. Meat Sci. 2013, 94, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Gouws, P.A.; Shange, N.; Hoffman, L.C. The microbial quality of black wildebeest (Connochaetes gnou) carcasses processed in a South African abattoir. In Game Meat Hygiene: Food Safety and Security; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; pp. 379–395. [Google Scholar]
- Taylor, A.; Lindsey, P.; Davies-Mostert, H.; Goodman, P. An Assessment of the Economic, Social and Conservation Value of the Wildlife Ranching Industry and Its Potential to Support the Green Economy in South Africa; The Endangered Wildlife Trust: Johannesburg, South Africa, 2016; pp. 96–109. Available online: http://www.rhinoresourcecenter.com/pdf_files/146/1462014538.pdf (accessed on 2 March 2022).
- IUCN SSC Antelope Specialist Group. Aepyceros melampus. The IUCN Red List of Threatened Species 2016: E.T550A50180828. Available online: https://www.iucnredlist.org/species/550/50180828 (accessed on 10 September 2022).
- Bekker, J.L.; Hoffman, L.C.; Jooste, P.J. Essential food safety management points in the supply chain of game meat in South Africa. In Game Meat Hygiene in Focus; Springer: Berlin/Heidelberg, Germany, 2011; pp. 39–65. [Google Scholar]
- Nkosi, D.V.; Bekker, J.L.; Hoffman, L.C. The Use of Organic Acids (Lactic and Acetic) as a Microbial Decontaminant during the Slaughter of Meat Animal Species: A Review. Foods 2021, 10, 2293. [Google Scholar] [CrossRef] [PubMed]
- Sohaib, M.; Anjum, F.M.; Arshad, M.S.; Rahman, U.U. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. J. Food Sci. Technol. 2016, 53, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Wardhana, D.K. Risk Factors for Bacterial Contamination of Bovine Meat during Slaughter in Ten Indonesian Abattoirs. Vet. Med. Int. 2019, 2019, 2707064. [Google Scholar]
- Van Ba, H.; Seo, H.-W.; Pil-Nam, S.; Kim, Y.-S.; Park, B.Y.; Moon, S.-S.; Kang, S.-J.; Choi, Y.-M.; Kim, J.-H. The effects of pre-and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses. Meat Sci. 2018, 137, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Hernandez, A.; Brashears, M.M.; Sanchez-Plata, M.X. Efficacy of lactic acid, lactic acid–acetic acid blends, and peracetic acid to reduce Salmonella on chicken parts under simulated commercial processing conditions. J. Food Prot. 2018, 81, 17–24. [Google Scholar] [CrossRef]
- Sallam, K.I.; Abd-Elghany, S.M.; Hussein, M.A.; Imre, K.; Morar, A.; Morshdy, A.E.; Sayed-Ahmed, M.Z. Microbial decontamination of beef carcass surfaces by lactic acid, acetic acid, and trisodium phosphate sprays. BioMed Res. Int. 2020, 2020, 2324358. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Alonso-Calleja, C.; Sierra, M.; Moreno, B.; del Camino García-Fernández, M. Effect of trisodium phosphate solutions washing on the sensory evaluation of poultry meat. Meat Sci. 2000, 55, 471–474. [Google Scholar] [CrossRef]
- South Africa. Hygiene Managers Manual Poultry Training: Module 2 Poultry Processing; Government Gazette: Pretoria, South Africa, 2006. Available online: http://www.nda.agric.za/Vetweb/VPH/Manuals/PoultryManual.pdf (accessed on 3 March 2022).
- Dan, S.D.; Mihaiu, M.; Reget, O.; Oltean, D.; Tabaran, A. Influence on week organic acids on pathogens on swine carcasses. Lucr. Stiintifice-Med. Veterinara. Univ. Stiinte Agric. Si Med. Vet. “Ion Ionescu Brad” Iasi 2017, 60, 265–273. [Google Scholar]
- Han, J.; Luo, X.; Zhang, Y.; Zhu, L.; Mao, Y.; Dong, P.; Yang, X.; Liang, R.; Hopkins, D.L.; Zhang, Y. Effects of spraying lactic acid and peroxyacetic acid on the bacterial decontamination and bacterial composition of beef carcasses. Meat Sci. 2020, 164, 108104. [Google Scholar] [CrossRef] [PubMed]
- SANS. The Limits and Associated Risks for Domestic Water South African National Standard: Version 3, No 982; Government Gazette: Pretoria, South Africa, 2017. Available online: https://cer.org.za/ (accessed on 6 July 2022).
- Yang, X.; Tran, F.; Wolters, T. Microbial ecology of decontaminated and not decontaminated beef carcasses. J. Food Res. 2017, 6, 85–91. [Google Scholar] [CrossRef]
- Neethling, J.; Hoffman, L.; Muller, M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016, 113, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, J.; Loeffler, M.; Herrmann, K.; Weiss, J. Application of exopolysaccharide-forming lactic acid bacteria in cooked ham model systems. Food Res. Int. 2019, 119, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Ergin, F.; Küçükçetin, A. Reduction of Salmonella enterica in Turkey breast slices kept under aerobic and vacuum conditions by application of lactic acid, a bacteriophage, and ultrasound. J. Food Saf. 2021, e12923. [Google Scholar] [CrossRef]
- Omori, Y.; Miake, K.; Nakamura, H.; Kage-Nakadai, E.; Nishikawa, Y. Influence of lactic acid and post-treatment recovery time on the heat resistance of Listeria monocytogenes. Int. J. Food Microbiol. 2017, 257, 10–18. [Google Scholar] [CrossRef]
- Casas, D.E.; Vargas, D.A.; Randazzo, E.; Lynn, D.; Echeverry, A.; Brashears, M.M.; Sanchez-Plata, M.X.; Miller, M.F. In-Plant Validation of Novel On-Site Ozone Generation Technology (Bio-Safe) Compared to Lactic Acid Beef Carcasses and Trim Using Natural Microbiota and Salmonella and E. coli O157: H7 Surrogate Enumeration. Foods 2021, 10, 1002. [Google Scholar] [CrossRef]
- Pohlman, F.; Dias-Morse, P.; Pinidiya, D. Product safety and color characteristics of ground beef processed from beef trimmings treated with peroxyacetic acid alone or followed by novel organic acids. J. Microbiol. Biotechnol. Food Sci. 2019, 2019, 93–101. [Google Scholar] [CrossRef] [Green Version]
- South Africa. Meat Safety Act (Act 40 of 2000). Available online: https://www.gov.za/ (accessed on 6 July 2022).
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Oxidative stability of previously frozen ostrich Muscularis iliofibularis packaged under different modified atmospheric conditions. Int. J. Food Sci. Technol. 2011, 46, 1171–1178. [Google Scholar] [CrossRef]
- Shange, N.; Makasi, T.N.; Gouws, P.A.; Hoffman, L.C. The influence of normal and high ultimate muscle pH on the microbiology and colour stability of previously frozen black wildebeest (Connochaetes gnou) meat. Meat Sci. 2018, 135, 14–19. [Google Scholar] [CrossRef]
- Leygonie, C.; Hoffman, L.C. Effect of different combinations of freezing and thawing rates on the shelf-life and oxidative stability of ostrich moon steaks (M. femorotibialis medius) under retail display conditions. Foods 2020, 9, 1624. [Google Scholar] [CrossRef] [PubMed]
- Shange, N.; Gouws, P.; Hoffman, L.C. Changes in pH, colour and the microbiology of black wildebeest (Connochaetes gnou) longissimus thoracis et lumborum (LTL) muscle with normal and high (DFD) muscle pH. Meat Sci. 2019, 147, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.-B.; Zhou, G.-H. Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Standarová, E.; Vorlová, L.; Gallas, L. Distribution of biogenic amines and polyamines in the pheasant meat. Maso 2012, 1, 51–54. [Google Scholar]
- Anderson, B.; Horder, J. The Australian Carcass Bruise Scoring System [visual appraisal of damage]. Qld. Agric. J. 1979, 105, 281–287. [Google Scholar]
- Chambers, P.; Grandin, T.; Heinz, G.; Srisuvan, T. Effects of stress and injury on meat and by-product quality. In Guidelines for Humane Handling, Transport and Slaughter of Livestock FAO Corporate Document Repository; Food and Agricultural Organization: Geneva, Switzerland, 2004; pp. 6–10. [Google Scholar]
- Carlson, B.A.; Geornaras, I.; Yoon, Y.; Scanga, J.A.; Sofos, J.N.; Smith, G.C.; Belk, K.E. Studies to evaluate chemicals and conditions with low-pressure applications for reducing microbial counts on cattle hides. J. Food Prot. 2008, 71, 1343–1348. [Google Scholar] [CrossRef]
- Buncic, S.; Sofos, J. Interventions to control Salmonella contamination during poultry, cattle and pig slaughter. Food Res. Int. 2012, 45, 641–655. [Google Scholar] [CrossRef]
- Yeh, Y.; De Moura, F.; Van Den Broek, K.; De Mello, A. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci. 2018, 139, 44–48. [Google Scholar] [CrossRef]
- Kim, J.H.; Hur, S.J.; Yim, D.G. Monitoring of microbial contaminants of beef, pork, and chicken in HACCP implemented meat processing plants of Korea. Korean J. Food Sci. Anim. Resour. 2018, 38, 282–290. [Google Scholar]
- Schlegelova, J.; Nápravnıková, E.; Dendis, M.; Horvath, R.; Benedık, J.; Babak, V.; Klımová, E.; Navratilova, P.; Šustáčková, A. Beef carcass contamination in a slaughterhouse and prevalence of resistance to antimicrobial drugs in isolates of selected microbial species. Meat Sci. 2004, 66, 557–565. [Google Scholar] [CrossRef]
- Tibesso, G.; Hiko, A. Effect of pre-slaughter animal handling on the physicochemical and microbiological quality of beef in selected municipal abattoirs, Oromia Reginal State, Ethiopia. EC Vet. Sci. Res. Artic. 2019, 4, 202–212. [Google Scholar]
- Saad, S.M.; Hassanin, F.S.; Salem, A.M.; Saleh, E.A.E. Efficiency of some organic acids as decontaminants in sheep carcasses. Benha Vet. Med. J. 2020, 38, 116–119. [Google Scholar]
- Ciríaco, M.; Moura-Alves, M.; Silva, R.; Pinto, I.; Saraiva, C.M.; Esteves, A. Decontamination of Pig Carcasses with Organic Acids. Proceedings 2020, 70, 63. [Google Scholar]
- Alnajrani, M.; Hanlon, K.; English, A.; Fermin, K.; Brashears, M.M.; Echeverry, A. Comparing the recovery of indicator microorganisms from beef trimmings using swabbing, rinsing, and grinding methodologies. Meat Muscle Biol. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Kocharunchitt, C.; Mellefont, L.; Bowman, J.P.; Ross, T. Application of chlorine dioxide and peroxyacetic acid during spray chilling as a potential antimicrobial intervention for beef carcasses. Food Microbiol. 2020, 87, 103355. [Google Scholar] [CrossRef]
- Membré, J.-M.; Laroche, M.; Magras, C. Assessment of levels of bacterial contamination of large wild game meat in Europe. Food Microbiol. 2011, 28, 1072–1079. [Google Scholar] [CrossRef]
- Castro, V.S.; Mutz, Y.d.S.; Rosario, D.K.A.; Cunha-Neto, A.; Figueiredo, E.E.d.S.; Conte-Junior, C.A. Inactivation of Multi-Drug Resistant Non-Typhoidal Salmonella and Wild-Type Escherichia coli STEC Using Organic Acids: A Potential Alternative to the Food Industry. Pathogens 2020, 9, 849. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Feye, K.M.; Peyton, B.; Worlie, D.; Draper, M.J.; Ricke, S.C. The addition of ViriditecTM aqueous ozone to peracetic acid as an antimicrobial spray increases air quality while maintaining Salmonella Typhimurium, non-pathogenic Escherichia coli, and Campylobacter jejuni reduction on whole carcasses. Front. Microbiol. 2019, 9, 3180. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, M.; Cosby, D.; Cox, N.; Thippareddi, H. Efficacy of peroxy acetic acid in reducing Salmonella and Campylobacter spp. populations on chicken breast fillets. Poult. Sci. 2020, 99, 2655–2661. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, L.; Niu, L.; Luo, X.; Dong, P. The acid tolerance responses of the Salmonella strains isolated from beef processing plants. Food Microbiol. 2022, 104, 103977. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, Y.; Li, K.; Luo, X.; Hopkins, D.L. Effect of carcass chilling on the palatability traits and safety of fresh red meat. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1676–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, L.; Muller, M.; Schutte, D.W.; Calitz, F.; Crafford, K. Consumer expectations, perceptions and purchasing of South African game meat. S. Afr. J. Wildl. Res.-24-Mon. Delayed Open Access 2005, 35, 33–42. [Google Scholar]
- Neethling, N.E.; Suman, S.P.; Sigge, G.O.; Hoffman, L.C. Muscle-specific colour stability of blesbok (Damaliscus pygargus phillipsi) meat. Meat Sci. 2016, 119, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Peruzy, M.; Murru, N.; Smaldone, G.; Proroga, Y.; Cristiano, D.; Fioretti, A.; Anastasio, A. Hygiene evaluation and microbiological hazards of hunted wild boar carcasses. Food Control 2022, 135, 108782. [Google Scholar] [CrossRef]
- Carrasco-García, A.A.; Pardío-Sedas, V.T.; León-Banda, G.G.; Ahuja-Aguirre, C.; Paredes-Ramos, P.; Hernández-Cruz, B.C.; Murillo, V.V. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 1656. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, M.; Li, X.; Zhang, D.; Hussain, Z.; Ren, C.; Bai, Y.; Zheng, X. Association between meat color of DFD beef and other quality attributes. Meat Sci. 2020, 161, 107954. [Google Scholar] [CrossRef]
- Newton, K.; Gill, C. The microbiology of DFD fresh meats: A review. Meat Sci. 1981, 5, 223–232. [Google Scholar] [CrossRef]
- Yu, S.L.; Cooke, P.; Tu, S.I. Effects of chilling on sampling of bacteria attached to swine carcasses. Lett. Appl. Microbiol. 2001, 32, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Smulders, F.; Toldra, F.; Flores, J.; Prieto, M. New technologies for meat and meat products. Utrecht Audet Tijdschr. 1992, 182, 186–188. [Google Scholar]
- Savell, J.; Mueller, S.; Baird, B. The chilling of carcasses. Meat Sci. 2005, 70, 449–459. [Google Scholar] [CrossRef]
- VPN/15/2010/01; Standard for Microbiological Monitoring of Meat Process Hygiene and Cleaning. Government Gazette: Pretoria, South Africa, 2010. Available online: https://www.nda.agric.za/v (accessed on 6 July 2022).
- Ben Braïek, O.; Smaoui, S. Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. J. Food Qual. 2021, 2021, 6653190. [Google Scholar] [CrossRef]
- Atanassova, V.; Apelt, J.; Reich, F.; Klein, G. Microbiological quality of freshly shot game in Germany. Meat Sci. 2008, 78, 414–419. [Google Scholar] [CrossRef]
- Avagnina, A.; Nucera, D.; Grassi, M.A.; Ferroglio, E.; Dalmasso, A.; Civera, T. The microbiological conditions of carcasses from large game animals in Italy. Meat Sci. 2012, 91, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Hochreutener, M.; Zweifel, C.; Corti, S.; Stephan, R. Effect of a commercial steam-vacuuming treatment implemented after slaughtering for the decontamination of cattle carcasses. Ital. J. Food Saf. 2017, 6, 6864. [Google Scholar] [CrossRef]
- Kure, C.F.; Axelsson, L.; Carlehög, M.; Måge, I.; Jensen, M.R.; Holck, A. The effects of a pilot-scale steam decontamination system on the hygiene and sensory quality of chicken carcasses. Food Control 2020, 109, 106948. [Google Scholar]
Killing Method | TPC | Coliform | E. coli | ||||||
---|---|---|---|---|---|---|---|---|---|
Helicopter Wounds | <10 | 10–300 | >300 | <10 | 10–300 | >300 | <10 | 10–300 | >300 |
AD (n = 24) | 3 (12.5%) | 21 (87.5%) | 0 | 1 (4.2%) | 23 (95.8%) | 0 | 8 (33.3%) | 16 (66.7%) | 0 |
AC (n = 24) | 5 (20.7%) | 19 (79.1%) | 0 | 3 (12.5%) | 20 (83.3%) | 1 (4.2%) | 8 (33.3%) | 16 (66.7%) | 0 |
Rifle Wounds | <10 | 10–300 | >300 | <10 | 10–300 | >300 | <10 | 10–300 | >300 |
AD (n = 134) | 4 (3%) | 115 (85.8%) | 15 (11.2%) | 10 (7.5%) | 106 (79.1%) | 18 (13.4%) | 28 (20.9%) | 96 (71.6%) | 10 (7.5%) |
AC (n = 134) | 7 (5.2%) | 115 (85.8%) | 12 (9%) | 20 (15%) | 103 (76.9%) | 11 (8.1%) | 37 (27.6%) | 93 (69.4%) | 4 (3%) |
Aerial Helicopter Shotgun Pellet Wounds | Land-Based Rifle Bullet Shot Wounds | |||||
---|---|---|---|---|---|---|
Position | Potable Water | Lactic Acid | Acetic Acid | Potable Water | Lactic Acid | Acetic Acid |
AD | 1 | 1 | 0 | 4 | 4 | 4 |
AC | 1 | 1 | 0 | 4 | 1 | 3 |
Total | 2 | 2 | 0 | 8 | 5 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkosi, D.V.; Bekker, J.L.; Gouws, P.A.; Hoffman, L.C. The Influence of Potable Water, Lactic and Acetic Acids on the Microbiology of Wound Areas on Impala (Aepyceros melampus) Carcasses. Microbiol. Res. 2022, 13, 740-752. https://doi.org/10.3390/microbiolres13040053
Nkosi DV, Bekker JL, Gouws PA, Hoffman LC. The Influence of Potable Water, Lactic and Acetic Acids on the Microbiology of Wound Areas on Impala (Aepyceros melampus) Carcasses. Microbiology Research. 2022; 13(4):740-752. https://doi.org/10.3390/microbiolres13040053
Chicago/Turabian StyleNkosi, Davies Veli, Johan Leon Bekker, Pieter Andries Gouws, and Louwrens Christiaan Hoffman. 2022. "The Influence of Potable Water, Lactic and Acetic Acids on the Microbiology of Wound Areas on Impala (Aepyceros melampus) Carcasses" Microbiology Research 13, no. 4: 740-752. https://doi.org/10.3390/microbiolres13040053
APA StyleNkosi, D. V., Bekker, J. L., Gouws, P. A., & Hoffman, L. C. (2022). The Influence of Potable Water, Lactic and Acetic Acids on the Microbiology of Wound Areas on Impala (Aepyceros melampus) Carcasses. Microbiology Research, 13(4), 740-752. https://doi.org/10.3390/microbiolres13040053