Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of EOs
2.2. Microbial Strains
2.3. Novel Ice Cream Products Supplemented with P. lentiscus and F. margarita EOs
2.4. Novel Fruit Juices Supplemented with P. lentiscus and F. margarita EOs
2.5. Analytical Procedures
2.5.1. GC/MS Analysis
2.5.2. Antimicrobial Assays
Screening of P. lentiscus and F. margarita EOs for Antimicrobial Activity by the Disc Diffusion Assay
Determination of Minimum Inhibitory Concentration (MIC), Non-Inhibitory Concentration (NIC), and Minimum Lethal Concentration (MLC)
Antimicrobial Activity of P. lentiscus EO in Ice Creams
Antimicrobial Activity of P. lentiscus and F. margarita EOs in Fruit Juices
2.6. Preliminary Sensory Evaluation
2.7. Statistical Analysis
3. Results
3.1. GC/MS Analysis
3.2. Antimicrobial Assays
3.3. P. lentiscus EO as Potential Biopreservative in Ice Cream
3.4. P. lentiscus and F. margarita EOs as Potential Biopreservatives in Fruit Juices
3.5. Preliminary Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils-A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Alternat. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Chorianopoulos, N.G.; Skandamis, P.N.; Nychas, G.J.E.; Haroutounian, S.A. Use of Essential Oil Treatments to Control the Listeria monocytogenes Growth in Various Food Commodities. Planta Med. 2008, 74, PI31. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Choulitoudi, E.; Bimpilas, A.; Mitropoulou, G.; Kourkoutas, Y.; Oreopoulou, V. Exploitation of the Biological Potential of Satureja thymbra Essential Oil and Distillation By-Products. J. Appl. Res. Med. Aromat. Plants 2017, 4, 12–20. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Alma, M.H.; Nitz, S.; Kollmannsberger, H.; Digrak, M.; Efe, F.T.; Yilmaz, N. Chemical Composition and Antimicrobial Activity of the Essential Oils from the Gum of Turkish Pistachio (Pistacia vera L). J. Agric. Food Chem. 2004, 52, 3911–3914. [Google Scholar] [CrossRef]
- Tsokou, A.; Georgopoulou, K.; Melliou, E.; Magiatis, P.; Tsitsa, E. Composition and Enantiomeric Analysis of the Essential Oil of the Fruits and the Leaves of Pistacia Vera from Greece. Molecules 2007, 12, 1233–1239. [Google Scholar] [CrossRef]
- Ramezani, M.; Khaje-Karamoddin, M.; Karimi-Fard, V. Chemical Composition and Anti-Helicobacter Pylori Activity of the Essential Oil of Pistacia Vera. Pharm. Biol. 2004, 42, 488–490. [Google Scholar] [CrossRef]
- özcan, M.; Tzakou, O.; Couladis, M. Essential Oil Composition of the Turpentine Tree (Pistacia terebinthus L.) Fruits Growing Wild in Turkey. Food Chem. 2009, 114, 282–285. [Google Scholar] [CrossRef]
- Usai, M.; Pintore, G.; Chessa, M.; Tirlllini, B. Essential Oil Composition of Different Aerial Parts of Pistacia terebinthus L. Growing Wild in Sardinia. J. Essent. Oil Res. 2006, 18, 383–385. [Google Scholar] [CrossRef]
- Flamini, G.; Bader, A.; Cioni, P.L.; Katbeh-Bader, A.; Morelli, I. Composition of the Essential Oil of Leaves, Galls, and Ripe and Unripe Fruits of Jordanian Pistacia Palaestina Boiss. J. Agric. Food Chem. 2004, 52, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Koutsoudaki, C.; Krsek, M.; Rodger, A. Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia Lentiscus Var. Chia. J. Agric. Food Chem. 2005, 53, 7681–7685. [Google Scholar] [CrossRef] [PubMed]
- Zrira, S.; Elamrani, A.; Benjilali, B. Chemical Composition of the Essential Oil of Pistacia lentiscus L. from Morocco-a Seasonal Variation. Flavour Fragr. J. 2003, 18, 475–480. [Google Scholar] [CrossRef]
- Fern’andez, A.; Camacho, A.; Fern’andez, C.; Altarejos, J. Composition of the Essential Oils from Galls and Aerial Partsof Pistacia lentiscus L. J. Essent. Res. 2000, 12, 19–23. [Google Scholar] [CrossRef]
- Mecherara-Idjeri, S.; Hassani, A.; Castola, V.; Casanova, J. Composition of Leaf, Fruit and Gall Essential Oils of Algerian Pistacia Atlantica Desf. J. Essent. Res. 2008, 20, 215–219. [Google Scholar] [CrossRef]
- Delazar, A.; Reid, R.G.; Sarker, S.D. GC-MS Analysis of the Essential Oil from the Oleoresin of Pistacia Atlantica Var.Mutica. Chem. Nat. Compd. 2004, 40, 24–27. [Google Scholar] [CrossRef]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia Species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. Sci. World J. 2013, 2013, 219815. [Google Scholar] [CrossRef]
- Paraschos, S.; Magiatis, P.; Gousia, P.; Economou, V.; Sakkas, H.; Papadopoulou, C.; Skaltsounis, A.-L. Chemical Investigation and Antimicrobial Properties of Mastic Water and Its Major Constituents. Food Chem. 2011, 129, 907–911. [Google Scholar] [CrossRef]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.Ι.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; et al. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules 2016, 21, 1069. [Google Scholar] [CrossRef]
- Sutour, S.; Luro, F.; Bradesi, P.; Casanova, J.; Tomi, F. Chemical Composition of the Fruit Oils of Five Fortunella Species Grown in the Same Pedoclimatic Conditions in Corsica (France). Nat. Prod. Commun. 2016, 11, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Nalbone, L.; Vallone, L.; Giarratana, F.; Virgone, G.; Lamberta, F.; Marotta, S.M.; Donato, G.; Giuffrida, A.; Ziino, G. Microbial Risk Assessment of Industrial Ice Cream Marketed in Italy. Appl. Sci. 2022, 12, 1988. [Google Scholar] [CrossRef]
- FDA. Inspection and Environmental Sampling of Ice Cream Production Facilities for Listeria monocytogenes and Salmonella FY 2016-17. 2022. Available online: https://www.fda.gov/food/sampling-protect-food-supply/inspection-and-environmentalsampling-ice-cream-production-facilities-listeria-monocytogenes-and-salmonella-FY-2016-17 (accessed on 26 February 2022).
- Kokkinakis, E.N.; Fragkiadakis, G.A.; Ioakeimidi, S.H.; Giankoulof, I.B.; Kokkinaki, A.N. Microbiological Quality of Ice Cream after HACCP Implementation: A Factory Case Study. Czech J. Food Sci. 2008, 26, 383–391. [Google Scholar] [CrossRef]
- Lawlor, K.A.; Schuman, J.D.; Simpson, P.G.; Taormina, P.J. Microbiological Spoilage of Beverages. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer New York: New York, NY, USA, 2009. [Google Scholar]
- Sospedra, J.; Rubert, J.M.; Soriano, J. Incidence of microorganisms from Fresh Orange Juice Processed by Squeezingmachines. Food Control. 2012, 23, 282–285. [Google Scholar] [CrossRef]
- Back, W. Colour Atlas and Handbook of Beverage Biology; Back, W., Ed.; Hans Carl: Nürnberg, Germany.
- Juvonen, R.; Virkajarvi, V.; Priha, O.; Laitila, A. Microbiological Spoilage and Safety Risks in Non-Beer Beverages Produced in a Brewery Environment; VTT Tiedotteita-Research: Espoo, Finland, 2011. [Google Scholar]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I.; et al. Dietary Mastic Oil Extracted from Pistacia lentiscus Var. Chia Suppresses Tumor Growth in Experimental Colon Cancer Models. Sci. Rep. 2017, 7, 3782. [Google Scholar] [CrossRef]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Vamvakias, M.; Bardouki, H.; Galanis, A.; Chlichlia, K.; Kourkoutas, Y.; Panayiotidis, M.Ι.; Pappa, A. Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora. Molecules 2018, 23, 123. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Fitsiou, E.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Bardouki, H.; Vamvakias, M.; Panas, P.; Chlichlia, K.; Pappa, A.; Kourkoutas, Y. Citrus medica Essential Oil Exhibits Significant Antimicrobial and Antiproliferative Activity. Lebenson. Wiss. Technol. 2017, 84, 344–352. [Google Scholar] [CrossRef]
- Chorianopoulos, N.G.; Lambert, R.J.W.; Skandamis, P.N.; Evergetis, E.T.; Haroutounian, S.A.; Nychas, G.-J.E. A Newly Developed Assay to Study the Minimum Inhibitory Concentration of Satureja spinosa Essential Oil. J. Appl. Microbiol. 2006, 100, 778–786. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Lambert, R. A Model for the Efficacy of Combined Inhibitors. J. Appl. Microbiol. 2003, 95, 734–743. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Definitive Document EDEF 9.3.2 Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9.3.2_Mould_testing_definitive_revised_2020 (accessed on 7 April 2020).
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Definitive Document EDEF 7.3.2 Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7.3.2_Yeast_testing_definitive_revised_2020 (accessed on 8 April 2020).
- Chorianopoulos, N.; Kalpoutzakis, E.; Aligiannis, N.; Mitaku, S.; Nychas, G.-J.; Haroutounian, S.A. Essential Oils of Satureja, origanum, and Thymus Species: Chemical Composition and Antibacterial Activities against Foodborne Pathogens. J. Agric. Food Chem. 2004, 52, 8261–8267. [Google Scholar] [CrossRef]
- Baranauskien, E.R.; Venskutonis, P.R.; Dambrauskien, E.E.; Viškelis, P. Harvesting Time Influences the Yield and Oil Composition of Origanum vulgare L. ssp. Vulgare and ssp. hirtum. Ind. Crop. Prod. 2013, 49, 43–51. [Google Scholar] [CrossRef]
- Gkogka, E.; Hazeleger, W.C.; Posthumus, M.A.; Beumer, R.R. The Antimicrobial Activity of the Essential Oil of Pistacia lentiscus var. Chia. J. Essent. Oil-Bear. Plants 2013, 16, 714–729. [Google Scholar] [CrossRef]
- Tabanca, N.; Nalbantsoy, A.; Kendra, P.E.; Demirci, F.; Demirci, B. Chemical Characterization and Biological Activity of the Mastic Gum Essential Oils of Pistacia lentiscus Var. Chia from Turkey. Molecules 2020, 25, 2136. [Google Scholar] [CrossRef] [PubMed]
- Leja, K.; Drożdżyńska, A.; Majcher, M.; Kowalczewski, P.Ł.; Czaczyk, K. Influence of Sub-Inhibitory Concentration of Selected Plant Essential Oils on the Physical and Biochemical Properties of Pseudomonas Orientalis. Open Chem. 2019, 17, 492–505. [Google Scholar] [CrossRef]
- Hassanzadazar, H.; Fathollahi, M.; Aminzare, M.; Mohseni, M. The Effect of Pistacia Atlantica Ssp. Kurdica Essential Oil on Chemical, Microbial, and Sensorial Properties of Minced Fish (Oncorhynchus Mykiss) during Refrigeration Storage. J. Aquat. Food Prod. Technol. 2021, 30, 1281–1291. [Google Scholar] [CrossRef]
- Ellahi, H.; Khalili Sadrabad, E.; Hekmatimoghaddam, S.; Jebali, A.; Sarmast, E.; Akrami Mohajeri, F. Application of Essential Oil of Pistacia atlantica Gum, Polypropylene and Silica Nanoparticles as a New Milk Packaging. Food Sci. Nutr. 2020, 8, 4037–4043. [Google Scholar] [CrossRef]
- Krichen, F.; Hamed, M.; Karoud, W.; Bougatef, H.; Sila, A.; Bougatef, A. Essential Oil from Pistachio By-Product: Potential Biological Properties and Natural Preservative Effect in Ground Beef Meat Storage. J. Food Meas. Charact. 2020, 14, 3020–3030. [Google Scholar] [CrossRef]
- Elhadef, K.; Ennouri, K.; Fourati, M.; Ben Hlima, H.; Akermi, S.; Mellouli, L.; Smaoui, S. Pistachio Hull Extract as a Practical Strategy to Extend the Shelf Life of Raw Minced Beef: Chemometrics in Quality Evaluation. Evid. Based. Complement. Alternat. Med. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Al-Kalifawi, E.J.; Hasan, S.A.; Al-Saadi, T.M.; AlObodi, E.E. Green synthesis of silver nanoparticles by kumquat (Fortunella margaarita) fruit extract and efficacy the antimicrobial activity. J. Al-Fath. 2015, 97, 977–983. [Google Scholar]
- Wang, Y.-W.; Zeng, W.-C.; Xu, P.-Y.; Lan, Y.-J.; Zhu, R.-X.; Zhong, K.; Huang, Y.-N.; Gao, H. Chemical Composition and Antimicrobial Activity of the Essential Oil of Kumquat (Fortunella Crassifolia Swingle) Peel. Int. J. Mol. Sci. 2012, 13, 3382–3393. [Google Scholar] [CrossRef]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Boumaiza, A.; Nada, H.G.; Rajabi, M.; Mousa, S.A. Eucalyptus Globulus Essential Oil as a Natural Food Preservative: Antioxidant, Antibacterial and Antifungal Properties in Vitro and in a Real Food Matrix (Orangina Fruit Juice). Appl. Sci. 2020, 10, 5581. [Google Scholar] [CrossRef]
- Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.K.; Abou El-Khair, E.K. Antimicrobial Activity of Some Essential Oils against Microorganisms Deteriorating Fruit Juices. Mycobiology 2006, 34, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Siddiqua, S.; Anusha, B.A.; Ashwini, L.S.; Negi, P.S. Antibacterial Activity of Cinnamaldehyde and Clove Oil: Effect on Selected Foodborne Pathogens in Model Food Systems and Watermelon Juice. J. Food Sci. Technol. 2015, 52, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.C.; Aban, M.P.; Navarro, A.R. Chemicals and Lemon Essential Oil Effect on Alicyclobacillus acidoterrestris Viability. Braz. J. Microbiol. 2013, 44, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.; Yu, L.J. Emerging Preservation Methods for Fruit Juices and Beverages. Intechopen.com. Available online: https://www.intechopen.com/books/food-additive/emerging-preservation-methods-3-for-fruit-juices-and-beverages (accessed on 27 June 2022).
- Mosqueda-Melgar, J.; Raybaudi-Massilia, R.M.; Mart’ın-Belloso, O. Microbiological Shelf Life and Sensory Evaluation of Fruit Juices Treated by High-Intensity Pulsed Electric Fields and Antimicrobials. Food Bioprod. Process. 2012, 90, 205–214. [Google Scholar] [CrossRef]
- Patrignani, F.; Tabanelli, J.; Siroli, L.; Gardini, F.; Lanciotti, R. Combined Effects of High-Pressure Homogenization Treatment and Citral on Microbiological Quality of Apricot Juice. Int. J. Food Microbiol. 2013, 160, 273–281. [Google Scholar] [CrossRef]
- Espina, L.; Garcia-Gonzalo, D.; Pagan, R. Synergistic Effect of Orange Essential Oil or (+)-Limonene with Heat Treatments to Inactivate Escherichia coli O157:H7 in Orange Juice at Lower Intensities while Maintaining Hedonic Acceptability. Food Bioprocess Technol. 2014, 7, 471–481. [Google Scholar] [CrossRef]
- Tyagi, A.; Gottardi, D.; Malik, A.; Guerzoni, M.E. Chemical Composition, in Vitro Antiyeast Activity and Fruit Juice Preservation Potential of Lemon Grass Oil. Food Sci. Technol.-Leb. 2014, 57, 731–737. [Google Scholar] [CrossRef]
- Duan, J.; Zhao, Y. Antimicrobial Efficiency of Essential Oil and Freeze-Thaw Treatments against Escherichia coli O157:H7 and Salmonella Spp. in Strawberry Juice. J. Food Sci. 2009, 74, 131–137. [Google Scholar] [CrossRef]
Compounds | KRI * | P. lentiscus (% Area) | F. margarita (% Area) |
---|---|---|---|
cis-3-hexenol | 811 | trace | |
thujene | 915 | trace | |
α-pinene | 922 | 67.71 | 0.743 |
camphene | 927 | 0.70 | trace |
verbenene | 937 | 0.07 | |
sabinene | 953 | 0.133 | |
β-pinene | 958 | 3.05 | 0.019 |
myrcene | 973 | 18.81 | 2.680 |
α-phellandrene | 981 | 0.073 | |
δ-3 carene | 990 | 0.020 | |
α-terpinene | 997 | trace | |
p-cymene | 1004 | trace | |
limonene | 1011 | 0.89 | 93.784 |
cis-ocimene | 1016 | 0.001 | |
trans-ocimene | 1018 | 0.019 | |
γ-terpinene | 1030 | 0.023 | |
dehydro-p-cymen | 1062 | trace | |
terpinolene | 1070 | 0.014 | |
linalol | 1086 | 0.73 | 0.118 |
α -campholenic ald | 1094 | 0.26 | |
trans-p-menthe-2.3-dien-1-ol | 1105 | 0.018 | |
pinocarveol | 1113 | 0.32 | |
cis-p-menthe-2.8-diene-1-ol | 1115 | 0.017 | |
trans-verbenol | 1117 | 0.07 | |
cis-verbenol | 1120 | 0.69 | |
terpinene-4-ol | 1152 | 0.020 | |
α-terpineol | 1168 | 0.026 | |
verbenone | 1168 | 0.32 | |
8-cumenol | 1172 | trace | |
trans-carveol | 1177 | 0.014 | |
decanal | 1178 | 0.015 | |
octyl acetate | 1191 | 0.055 | |
cis-carveol | 1197 | 0.011 | |
carvone | 1217 | 0.023 | |
geraniol | 1231 | trace | |
perilla aldehyde | 1233 | 0.019 | |
neryl acetate | 1340 | 0.014 | |
α-cubebene | 1344 | trace | |
geranyl acetate | 1358 | 0.111 | |
α-copaene | 1366 | 0.016 | |
β-elemene | 1378 | 0.023 | |
p-menthe-1-en-9-yl acetate | 1399 | 0.007 | |
caryophyllene | 1403 | 0.50 | 0.010 |
humulene | 1436 | 0.008 | |
δ-germacrene | 1462 | 1.343 | |
bicyclogermacrene | 1479 | 0.246 | |
α-mourolene | 1483 | trace | |
valencene | 1501 | 0.009 | |
δ-cadinene | 1504 | 0.053 | |
B-germacrene | 1533 | 0.039 |
Microbial Species | P. lentiscus | F. margarita | Ciproxin | Amphotericin B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | NIC | MLC | MIC | NIC | MLC | MIC | NIC | MLC | MIC | NIC | MLC | |
E. coli | 4584 ± 17 | 4291 ± 9 | 17,200 | - | - | - | 0.984 ± 0.001 | 0.956 ± 0.002 | 4 | - | - | - |
L. monocytogenes | 516 ± 17 | 129 ± 9 | 2150 | - | - | - | 0.979 ± 0.001 | 0.968 ± 0.001 | 4 | - | - | - |
P.fragi | 1542 ± 26 | 145 ± 9 | 6880 | - | - | - | 0.955 ± 0.001 | 0.940 ± 0.002 | 8 | |||
A. niger | 2150 | - | 9300 | 4785 | - | 18,600 | - | - | - | 1 | - | 4 |
S. cerevisiae | 2150 | - | 9300 | 4785 | - | 18,600 | - | - | - | 1 | - | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitropoulou, G.; Bardouki, H.; Vamvakias, M.; Panas, P.; Paraskevas, P.; Kourkoutas, Y. Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices. Microbiol. Res. 2022, 13, 667-680. https://doi.org/10.3390/microbiolres13030048
Mitropoulou G, Bardouki H, Vamvakias M, Panas P, Paraskevas P, Kourkoutas Y. Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices. Microbiology Research. 2022; 13(3):667-680. https://doi.org/10.3390/microbiolres13030048
Chicago/Turabian StyleMitropoulou, Gregoria, Haido Bardouki, Manolis Vamvakias, Panayiotis Panas, Panagiotis Paraskevas, and Yiannis Kourkoutas. 2022. "Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices" Microbiology Research 13, no. 3: 667-680. https://doi.org/10.3390/microbiolres13030048
APA StyleMitropoulou, G., Bardouki, H., Vamvakias, M., Panas, P., Paraskevas, P., & Kourkoutas, Y. (2022). Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices. Microbiology Research, 13(3), 667-680. https://doi.org/10.3390/microbiolres13030048