Molecular Character of Mylonchulus hawaiiensis and Morphometric Differentiation of Six Mylonchulus (Nematoda; Order: Mononchida; Family: Mylonchulidae) Species Using Multivariate Analysis
Abstract
:1. Introduction
2. Material and Method
2.1. Nematode Isolation, Processing, and Identification
2.2. DNA Extraction, PCR, and Phylogenetic Analysis
2.3. Statistical Analysis
3. Results
3.1. Molecular Analysis
3.2. Morphometric Characteristics
Wilks’ Lambda | F | Sig. | |
---|---|---|---|
Body Length | 0.434 | 5.749 | 0.002 |
a | 0.598 | 2.961 | 0.034 |
b | 0.752 | 1.45 | 0.246 |
c | 0.208 | 16.787 | 0.000 |
c′ | 0.441 | 5.573 | 0.002 |
V | 0.353 | 8.08 | 0.000 |
G1% | 0.561 | 3.448 | 0.019 |
G2% | 0.289 | 10.841 | 0.000 |
Neck | 0.343 | 8.434 | 0.000 |
Buccal cavity length | 0.558 | 3.479 | 0.018 |
Buccal cavity width | 0.392 | 6.818 | 0.001 |
Dorsal tooth apex | 0.268 | 12.041 | 0.000 |
Amphidial position to ant. end | 0.68 | 2.074 | 0.107 |
Dorsal tooth length | 0.32 | 9.36 | 0.000 |
Rectum | 0.614 | 2.77 | 0.044 |
Tail length | 0.776 | 1.27 | 0.312 |
Genus | M. paitensis | M. brachyuris | M. sigmaturus | M. lacustris | M. kermaniensis | M. hawaiiensis | p-Value |
---|---|---|---|---|---|---|---|
Body length | 1164.5 ± 74.1 a | 1198.6 ± 50.9 a | 1263.1 ± 24.1 ac | 979.6 ± 25.8 b | 1357.2 ± 31.6 c | 1195.8 ± 62.9 a | 0.000 |
a | 30.0 ± 0.8 ac | 28.2 ± 1.7 abc | 31.9 ± 1.9 c | 26.0 ± 1.3 ab | 29.0 ± 1.6 ac | 24.0 ± 1.5 b | 0.17 |
b | 3.4 ± 0.1 a | 3.5 ± 0.1 ab | 3.5 ± 0.2 ab | 3.4 ± 0.1 ab | 3.6 ± 0.1 ab | 3.7 ± 0.1 b | 0.222 |
c | 29.7 ± 0.6 a | 30.8 ± 0.7 ac | 31.8 ± 0.7 ac | 21.5 ± 0.3 b | 33.1 ± 1.6 c | 23.5 ± 1.2 b | 0.000 |
c′ | 1.4 ± 0.02 a | 1.4 ± 0.08 a | 1.5 ± 0.08 ac | 1.9 ± 0.03 b | 1.5 ± 0.07 a | 1.7 ± 0.09 c | 0.000 |
V | 64.4 ± 0.4 a | 61.8 ± 0.6 a | 63.4 ± 0.2 a | 58.5 ± 1.2 b | 63.5 ± 0.7 a | 55.3 ± 1.8 c | 0.000 |
G1% | 18.0 ± 1.0 a | 16.0 ± 0.9 a | 16.7 ± 1.0 a | 11.4 ± 0.6 b | 16.8 ± 0.9 a | 16.3 ± 1.4 a | 0.002 |
G2% | 16.9 ± 1.2 a | 14.3 ± 1.5 a | 15.8 ± 1.1 a | 9.4 ± 0.2 b | 20.8 ± 0.2 c | 17.1 ± 1.4 a | 0.000 |
Neck | 348.1 ± 24.3 ac | 341.8 ± 8.1 c | 362.5 ± 3.9 ac | 283.9 ± 3.4 b | 378.5 ± 7.3 a | 289.8 ± 12.1 b | 0.000 |
Buccal cavity length | 24.8 ± 0.6 ac | 23.4 ± 0.3 c | 25.3 ± 0.2 ac | 24.9 ± 0.3 ac | 25.8 ± 0.4 ab | 27.3 ± 1.1 b | 0.009 |
Buccal cavity width | 13.9 ± 0.6 ac | 12.7 ± 0.5 ce | 13.3 ± 0.8 ace | 11.5 ± 0.2 e | 16.3 ± 0.5 b | 14.8 ± 0.9 ab | 0.000 |
Dorsal tooth apex | 3.6 ± 0.7 a | 4.0 ± 0.1 a | 4.5 ± 0.2 ab | 5.6 ± 0.2 bd | 7.0 ± 0.3 c | 6.4 ± 0.3 dc | 0.000 |
Amphidial position to ant. end | 10.1 ± 1.3 a | 9.5 ± 0.3 a | 12.8 ± 0.6 b | 9.8 ± 0.2 a | 10.4 ± 0.3 a | 10.5 ± 0.4 a | 0.082 |
Dorsal tooth length | 8.1 ± 0.3 ac | 7.7 ± 0.3 a | 8.1 ± 0.1 ac | 7.6 ± 0.1 a | 8.5 ± 0.2 c | 6.3 ± 0.3 b | 0.000 |
Rectum | 22.5 ± 1.5 ac | 23.6 ± 0.7 c | 22.0 ± 0.3 abc | 20.2 ± 0.7 ab | 20.0 ± 0.3 b | 20.3 ± 1.1 ab | 0.024 |
Tail | 39.7 ± 2.9 a | 39.1 ± 2.2 a | 40.0 ± 0.7 ab | 45.6 ± 0.9 b | 42.2 ± 1.8 ab | 43.3 ± 1.7 ab | 0.131 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chitwood, B.G. The English word “Nema” revised. Sys. Biol. 1957, 4, 1619. [Google Scholar] [CrossRef]
- Jairajpuri, M.S. Studies on Mononchida of India. I. The genera Hadronchus, Iotonchus and Miconchus and a revised classification of Mononchida, new order. Nematologica 1969, 15, 557–581. [Google Scholar] [CrossRef]
- Cassidy, G.H. Some mononchs of Hawaii. Hawaiian Plant. Rec. 1931, 35, 305–339. [Google Scholar]
- Ahmad, W.; Jairajpuri, M.S. Mononchida: The predaceous nematodes. In Nematology Monographs and Perspectives; Brill: Leiden, The Netherlands, 2010; Volume 7, 298p. [Google Scholar]
- Koohkan, M.; Shokoohi, E.; Mullin, P. Phylogenetic relationships of three families of the suborder Mononchina Kirjanova & Krall, 1969 inferred from 18S rDNA. Nematology 2015, 17, 1113–1125. [Google Scholar] [CrossRef]
- Koohkan, M.; Shokoohi, E. Mass Production and Prey Species of Mylonchulus sigmaturus (Nematoda: Mylonchulidae) in the Laboratory. Acta. Zool. Bulgarica. 2014, 66, 555–558. [Google Scholar]
- Khan, Z.; Kim, Y.H. A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. App. Soil Ecol. 2007, 35, 370–379. [Google Scholar] [CrossRef]
- Cobb, M.V. Some freshwater nematodes of the Douglas Lake Region of Michigan, USA. Trans. Am. Micros. Soc. 1915, 34, 21–47. [Google Scholar] [CrossRef]
- Farahmand, S.; Eskandari, A.; Orselli, L.; Karegar, A. Some known species of the genera Mononchus Bastian, 1865 and Mylonchulus (Cobb, 1916) Altherr, 1953 (Nematoda: Mononchina) from Semnan province, Iran. Nematol. Mediter. 2009, 37, 145–154. [Google Scholar]
- Koohkan, M.; Shokoohi, E.; Abolafia, J. Study of some mononchids (Mononchida) from Iran with a compendium of the genus Anatonchus. Trop. Zool. 2014, 27, 88–127. [Google Scholar] [CrossRef]
- Shokoohi, E.; Mehrabi-Nasab, A.; Mirzaei, M.; Peneva, V. Study of mononchids from Iran, with description of Mylonchulus kermaniensis sp. n. (Nematoda: Mononchida). Zootaxa 2013, 3599, 519–534. [Google Scholar] [CrossRef]
- Goodey, T. Soil and Freshwater Nematodes; Methuen: London, UK, 1951; p. 390. [Google Scholar]
- Yeates, G.W. Nematodes from New Caledonia. 1. Introduction and Mononchoidea. Fundam. Appl. Nematol. 1992, 15, 101–126. [Google Scholar]
- Andrássy, I. Über das System der Mononchiden (Mononchidae Chitwood, 1937; Nematoda). Ann. Hist. Nat. Musei Natl. Hung. 1958, 50, 151–171. [Google Scholar]
- Cobb, N.A. The Mononchs. A genus of free-living predatory nematodes. Soil Sci. 1917, 3, 431–486. [Google Scholar] [CrossRef]
- Altherr, E. Nématodes du sol du Jura vaudois et français. I. Bull. Soc. Vaud. Sci. Nat. 1953, 65, 429–460. [Google Scholar]
- Bütschli, O. Beitrage zur Kenntnis der freilebenden Nematoden. Nova Acta Acad. Caesareae Leipold-Carol. Nat. Curios 1873, 36, 1–24. [Google Scholar]
- Gonzalez-Martinez, A.; De-Pablos-Heredero, C.; González, M.; Rodriguez, J.; Barba, C.; García, A. Usefulness of discriminant analysis in the morphometric differentiation of six native freshwater species from Ecuador. Animals 2021, 11, 111. [Google Scholar] [CrossRef]
- Nyaku, S.T.; Kantety, R.V.; Lawrence, K.S.; van Santen, E.; Sharma, G.C. Canonical discriminant analysis of Rotylenchulus reniformis in Alabama. Nematropica 2013, 43, 171–181. [Google Scholar]
- Królaczyk, K.; Zaborski, D.; Dzierzba, E.; Kavetska, K.M. Redescription of Quasiamidostomum Fulicae (Rudolphi, 1819) Lomakin, 1991 (Nematoda: Amidostomatidae), a parasite of Fulica Atra (Gruiformes). J. Vet. Res. 2020, 64, 95–102. [Google Scholar] [CrossRef]
- Shokoohi, E. Observation on Hemicriconemoides brachyurus (Loos, 1949) Chitwood & Birchfield, 1957 associated with grass in South Africa. Helminthologia 2022, 59, 210–216. [Google Scholar] [CrossRef]
- De Grisse, A.T. Contribution to the Morphology and the Systematics of the Criconematidae (Taylor, 1936) Thorne, 1949; Faculty of Agricultural Sciences: Gent, Belgium, 1969; p. 35. [Google Scholar]
- Straube, D.; Juen, A. Storage and shipping of tissue samples for DNA analyses: A case study on earthworms. Eur. J. Soil Biol. 2013, 57, 13–18. [Google Scholar] [CrossRef]
- Shokoohi, E. Morphological and molecular characterisation of Boleodorus volutus Lima & Siddiqi, 1963 from South Africa with the first SEM observations of the species. Russian J. Nematol. 2021, 29, 101–109. [Google Scholar] [CrossRef]
- Carta, L.K.; Li, S. Improved 18S small subunit rDNA primers for problematic nematode amplification. J. Nematol. 2018, 50, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc. Acids Sym. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Page, R.D. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 1996, 12, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Andrássy, I. Eine interessante Nematodenfauna der Gerste. Nematologische Notizen. Acta Zool. Acad. Sci. Hung. 1956, 2, 307–317. [Google Scholar]
- Hopper, B.E.; Cairns, E.J. Taxonomic Keys to Plant, Soil and Aquatic Nematodes; Alabama Polytechnic Institute: Auburn, AL, USA, 1959; p. 176. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v7, 2015; Massey University Press: Auckland, New Zealand, 2016. [Google Scholar]
- Nattero, J.; Piccinali, R.V.; Macedo Lopes, C.; Hernández, M.L.; Abrahan, L.; Lobbia, P.A.; Rodríguez, C.S.; de la Fuente, L.C. Morphometric variability among the species of the Sordida subcomplex (Hemiptera: Reduviidae: Triatominae): Evidence for differentiation across the distribution range of Triatoma sordida. Paras. Vec. 2017, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Addinsoft. XLSTAT, Analyse de données et Statistique avec MS Excel; Addinsoft: New York, NY, USA, 2007. [Google Scholar]
- Olia, M.; Ahmad, W.; Araki, M.; Minaka, N. Molecular characterization of some species of Mylonchulus (Nematoda: Mononchida) from Japan and comments on the status of Paramylonchulus and Pakmylonchulus. Nematology 2009, 11, 337–342. [Google Scholar] [CrossRef]
- Nisa, R.U.; Tantray, A.Y.; Kouser, N.; Allie, K.A.; Wani, S.M.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L.; Shah, A.A. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi. J. Biol. Sci. 2021, 28, 3049–3059. [Google Scholar] [CrossRef]
- Figueiredo, J.; Simões, M.J.; Gomes, P.; Barroso, C.; Pinho, D.; Conceição, L.; Fonseca, L.; Abrantes, I.; Pinheiro, M.; Conceição, E. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes. PLoS ONE 2013, 8, e83542. [Google Scholar] [CrossRef]
- Stock, S.P.; Kaya, H.K. A multivariate analysis of morphometric characters of Heterorhabditis species (Nemata: Heterorhabditidae) and the role of morphometrics in the taxonomy of species of the genus. J. Parasitol. 1996, 82, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Rubtsova, T.V.; Chizhov, V.N.; Subbotin, S.A. Longidorus artemisiae sp. n. (Nematoda: Longidoridae) from roots of Artemisia sp., Rostov region, Russia. Russ. J. Nematol. 1999, 7, 33–38. [Google Scholar]
- Stock, S.P.; Nadler, S.A. Morphological and molecular characterisation of Panagrellus spp. (Cephalobina: Panagrolaimidae): Taxonomic status and phylogenetic relationships. Nematology 2006, 8, 921–938. [Google Scholar] [CrossRef]
- Cabrera-Toledo, D.; Vargas-Ponce, O.; Ascencio-Ramírez, S.; Valadez-Sandoval, L.M.; Pérez-Alquicira, J.; Morales-Saavedra, J.; Huerta-Galván, O.F. Morphological and genetic variation in monocultures, forestry systems and wild populations of Agave maximiliana of western Mexico: Implications for its conservation. Front. Plant Sci. 2020, 11, 817. [Google Scholar] [CrossRef]
- Apolônio Silva de Oliveira, D.; Decraemer, W.; Moens, T.; dos Santos, G.A.P.; Derycke, S. Low genetic but high morphological variation over more than 1000 km coastline refutes omnipresence of cryptic diversity in marine nematodes. BMC Evol. Biol. 2017, 17, 71. [Google Scholar] [CrossRef]
- Oxnard, C.; O’Higgins, P. Biology clearly needs morphometrics. Does morphometrics need biology? Biol. Theory 2009, 4, 84–97. [Google Scholar] [CrossRef]
- Maertens, D. Observations on life cycle of Prionchulus punctatus (Cobb, 1917) and culture conditions. Biol. Jb. Dodonaea 1975, 43, 197–218. [Google Scholar]
- Grootaert, P.; Maertens, D. Cultivation and life cycle of Mononchus aquaticus. Nematologica 1976, 22, 173–181. [Google Scholar] [CrossRef]
- Cohn, E.; Mordechai, E. Biological control of citrus nematode. Phytoparasitica 1973, 1, Abstract. [Google Scholar]
Species | Province | Location | Host | GPS Coordinates |
---|---|---|---|---|
M. brachyuris | Kerman | Lalezar | walnut | N: 29°29′08.5″; E: 56°48′50.0″ |
Mazandaran | Qaemshahr | forest soil | N: 36°23′56.75″; E: 52°49′33.97″ | |
M. hawaiiensis | Kerman | Jiroft | soil | N: 28°58′36.77″; E: 57°38′3.80″ |
M. kermaniensis | Kerman | Jiroft | soil | N: 28°58′36.77″; E: 57°38′3.80″ |
M. lacustris | Kerman | Jiroft | citrus | N: 28°36′6.17″; E: 57°49′44.1″ |
M. paitensis | Kerman | Andoohjerd | grassland | N: 30°14′12.10″; E: 57°45′10.9″ |
Semnan | Damghan | walnut | N: 36°13′50.29″; E: 54°11′5.34″ | |
Mazandaran | Qaemshahr | forest soil | N: 36°23′56.75″; E: 52°49′33.97″ | |
M. sigmaturus | Kerman | Kerman | soil | N: 30°15′14.9″; E: 57°6′14.73″ |
Fars | Shiraz | ash tree | N: 29°43′45.63″; E: 52°34′56.79″ |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
---|---|---|---|---|---|---|---|---|---|
Accession Number | Locality | OP210758 | AB361439 | AB361441 | JQ742964 | AB361438 | AB361440 | AB361442 | |
1 | OP210758 | Iran | 0.002 | 0.002 | 0.003 | 0.002 | 0.002 | 0.002 | |
2 | AB361439 | Japan | 0.001 | 0.001 | 0.003 | 0.000 | 0.000 | 0.000 | |
3 | AB361441 | Japan | 0.001 | 0.000 | 0.003 | 0.001 | 0.001 | 0.001 | |
4 | JQ742964 | Iran | 0.001 | 0.001 | 0.002 | 0.003 | 0.003 | 0.003 | |
5 | AB361438 | Japan | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | |
6 | AB361440 | Japan | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | |
7 | AB361442 | Japan | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 |
Source | df | SS | MS | Pseudo-F | p (Perm) | Unique Perms |
---|---|---|---|---|---|---|
species | 5 | 895.46 | 179.09 | 397.34 | 0.001 | 998 |
Variables | 154 | 69.412 | 0.45073 | |||
Total | 159 | 964.88 |
M. paitensis | M. brachyuris | M. sigmaturus | M. lacustris | M. kermaniensis | M. hawaiiensis | |
---|---|---|---|---|---|---|
M. paitensis | ||||||
M. brachyuris | 0.33 | |||||
M. sigmaturus | 0.28 | 0.38 | ||||
M. lacustris | 0.93 | 0.76 | 0.89 | |||
M. kermaniensis | 0.61 | 0.60 | 0.74 | 0.81 | ||
M. hawaiiensis | 0.39 | 0.55 | 0.51 | 1.81 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokoohi, E.; Moyo, N. Molecular Character of Mylonchulus hawaiiensis and Morphometric Differentiation of Six Mylonchulus (Nematoda; Order: Mononchida; Family: Mylonchulidae) Species Using Multivariate Analysis. Microbiol. Res. 2022, 13, 655-666. https://doi.org/10.3390/microbiolres13030047
Shokoohi E, Moyo N. Molecular Character of Mylonchulus hawaiiensis and Morphometric Differentiation of Six Mylonchulus (Nematoda; Order: Mononchida; Family: Mylonchulidae) Species Using Multivariate Analysis. Microbiology Research. 2022; 13(3):655-666. https://doi.org/10.3390/microbiolres13030047
Chicago/Turabian StyleShokoohi, Ebrahim, and Ngonidzashe Moyo. 2022. "Molecular Character of Mylonchulus hawaiiensis and Morphometric Differentiation of Six Mylonchulus (Nematoda; Order: Mononchida; Family: Mylonchulidae) Species Using Multivariate Analysis" Microbiology Research 13, no. 3: 655-666. https://doi.org/10.3390/microbiolres13030047
APA StyleShokoohi, E., & Moyo, N. (2022). Molecular Character of Mylonchulus hawaiiensis and Morphometric Differentiation of Six Mylonchulus (Nematoda; Order: Mononchida; Family: Mylonchulidae) Species Using Multivariate Analysis. Microbiology Research, 13(3), 655-666. https://doi.org/10.3390/microbiolres13030047