Exercise-Driven Comprehensive Recovery: Pulmonary Rehabilitation’s Impact on Lung Function, Mechanics, and Immune Response in Post-COVID-19 Patients
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Participant Selection Criteria
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Evaluation of Inflammatory Mediators in Breath Condensate
2.6. Cellular and Humoral Immune Response Analysis
2.7. Body Composition Characterization
2.8. Hand Grip Strength Assessment
2.9. Respiratory Muscle Strength Assessment
2.10. Fractional Exhaled Nitric Oxide
2.11. The Neutrophil-to-Lymphocyte Ratio
2.12. Evaluation of Lung Function and Mechanics
3. Pulmonary Rehabilitation Training Protocol: Aerobic Training and Resistance Training
3.1. Aerobic Training
3.2. Resistance Training
3.3. Statistical Analysis
4. Results
4.1. Effects of Pulmonary Rehabilitation on Clinical Features of Post-COVID-19 Patients
4.2. Pulmonary Rehabilitation Reduces Inflammatory and Increases Anti-Inflammatory Mediators in Breath Condensate
4.3. Pulmonary Rehabilitation Reduces Inflammatory and Increases Anti-Inflammatory Mediators in Blood (Serum)
4.4. Pulmonary Rehabilitation Improves Lung Function
4.5. Pulmonary Rehabilitation Improves Lung Mechanics
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 16 May 2023).
- Harky, A.; Ala’Aldeen, A.; SundasButt Duric, B.; Roy, S.; Zeinah, M. COVID-19 and Multiorgan Response: The Long-Term Impact. Curr. Probl. Cardiol. 2023, 48, 101756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vejen, M.; Hansen, E.F.; Al-Jarah, B.N.I.; Jensen, C.; Thaning, P.; Jeschke, K.N.; Ulrik, C.S. Hospital admission for COVID-19 pneumonitis—Long-term impairment in quality of life and lung function. Eur. Clin. Respir. J. 2022, 9, 2024735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christopher, D.J.; Isaac, B.T.J.; John, F.B.; Shankar, D.; Samuel, P.; Gupta, R.; Thangakunam, B. Impact of post-COVID-19 lung damage on pulmonary function, exercise tolerance and quality of life in Indian subjects. PLoS Glob. Public Health 2024, 4, e0002884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qudus, M.S.; Tian, M.; Sirajuddin, S.; Liu, S.; Afaq, U.; Wali, M.; Liu, J.; Pan, P.; Luo, Z.; Zhang, Q.; et al. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J. Med. Virol. 2023, 95, e28751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Mears, J.R.; Shakib, L.; Beynor, J.I.; Shanaj, S.; Korsunsky, I.; Nathan, A. Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium; Donlin LT, Raychaudhuri S. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 2021, 13, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, J.D.; Cornaby, C.; Schmitz, J.L. Indeterminate QuantiFERON Gold Plus Results Reveal Deficient Interferon Gamma Responses in Severely Ill COVID-19 Patients. J. Clin. Microbiol. 2021, 59, e0081121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alfaro, E.; Casitas, R.; Díaz-García, E.; García-Tovar, S.; Galera, R.; Torres-Vargas, M.; Fernández-Velilla, M.; López-Fernández, C.; Añón, J.M.; Quintana-Díaz, M.; et al. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Front. Immunol. 2024, 15, 1401015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vink, M.; Vink-Niese, A. Could Cognitive Behavioral Therapy Be an Effective Treatment for Long COVID and Post COVID-19 Fatigue Syndrome? Lessons from the Qure Study for Q-Fever Fatigue Syndrome. Healthcare 2020, 8, 552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Sayed, S.; Shokry, D.; Gomaa, S.M. Post-COVID-19 fatigue and anhedonia: A cross-sectional study and their correlation to post-recovery period. Neuropsychopharmacol. Rep. 2021, 41, 50–55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetol. Metab. Syndr. 2021, 15, 869–875, Erratum in: Diabetol. Metab. Syndr. 2022, 16, 102504; Erratum in: Diabetol. Metab. Syndr. 2022, 16, 102660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, S.; Zhang, Q. Pilot testing the impact of an aerobic exercise plus rehabilitation training on respiratory function in older adults with COPD. Geriatr. Nurs. 2023, 51, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Moraes-Ferreira, R.; Brandao-Rangel, M.A.R.; Gibson-Alves, T.G.; Silva-Reis, A.; Souza-Palmeira, V.H.; Aquino-Santos, H.C.; Frison, C.R.; Oliveira, L.V.F.; Albertini, R.; Vieira, R.P. Physical Training Reduces Chronic Airway Inflammation and Mediators of Remodeling in Asthma. Oxidative Med. Cell. Longev. 2022, 2022, 5037553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- do Nascimento, E.S.; Sampaio, L.M.; Peixoto-Souza, F.S.; Dias, F.D.; Gomes, E.L.; Greiffo, F.R.; Ligeiro de Oliveira, A.P.; Stirbulov, R.; Vieira, R.P.; Costa, D. Home-based pulmonary rehabilitation improves clinical features and systemic inflammation in chronic obstructive pulmonary disease patients. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 645–653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silva-Reis, A.; Rodrigues Brandao-Rangel, M.A.; Moraes-Ferreira, R.; Gonçalves-Alves, T.G.; Souza-Palmeira, V.H.; Aquino-Santos, H.C.; Bachi, A.L.L.; de Oliveira, L.V.F.; Lopes-Martins, R.Á.B.; Oliveira-Silva, I.; et al. Combined resistance and aerobic training improves lung function and mechanics and fibrotic biomarkers in overweight and obese women. Front. Physiol. 2022, 13, 946402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghelli, F.; Panizzolo, M.; Garzaro, G.; Squillacioti, G.; Bellisario, V.; Colombi, N.; Bergamaschi, E.; Guseva Canu, I.; Bono, R. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Aquino-Santos, H.C.; Tavares-Vasconcelos, J.S.; Brandão-Rangel, M.A.R.; Araújo-Rosa, A.C.; Morais-Felix, R.T.; Oliveira-Freitas, S.; Santa-Rosa, F.A.; Oliveira, L.V.F.; Bachi, A.L.L.; Alves, T.G.G.; et al. Chronic alteration of circadian rhythm is related to impaired lung function and immune response. Int. J. Clin. Pract. 2020, 74, e13590. [Google Scholar] [CrossRef]
- Martins, E.C.; Silveira LD, F.; Viegas, K.; Beck, A.D.; Fioravantti Júnior, G.; Cremonese, R.V.; Lora, P.S. Neutrophil-lymphocyte ratio in the early diagnosis of sepsis in an intensive care unit: A case-control study. Rev. Bras. Ter. Intensiv. 2019, 31, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Miyaki, A.; Akazawa, N.; Choi, Y.; Ra, S.G.; Tanahashi, K.; Kumagai, H.; Oikawa, S.; Maeda, S. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H348–H355. [Google Scholar] [CrossRef] [PubMed]
- Gil, S.; de Oliveira Júnior, G.N.; Sarti, F.M.; Filho, W.J.; Longobardi, I.; Turri, J.A.O.; Shinjo, S.K.; Ferriolli, E.; Avelino-Silva, T.J.; Busse, A.L.; et al. Acute Muscle Mass Loss Predicts Long-Term Fatigue, Myalgia, and Health Care Costs in COVID-19 Survivors. J. Am. Med. Dir. Assoc. 2023, 24, 10–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akpek, M. Does COVID-19 Cause Hypertension? Angiology 2022, 73, 682–687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faria, N.; Oliveira, T.; Pinto, P.; Almeida, V.; Carvalho, R.; Fernandes, M.J.; Sucena, M.; Gomes, J. Role of the one-minute sit-to-stand test in the diagnosis of post COVID-19 condition: A prospective cohort study. J. Bras. Pneumol. 2023, 49, e20230027. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, A.; Kramer, R.; Ostojic, S. Nitric Oxide: The Missing Factor in COVID-19 Severity? Med. Sci. 2021, 10, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, S.; Brown, H.M.; Hwang, S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw. 2018, 18, e33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 2020, 5, e139834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benavides-Cordoba, V.; Barros-Poblete, M.; Vieira, R.P.; Mazzucco, G.; Fregonezi, G.; Torres-Castro, R. Provision of pulmonary rehabilitation in Latin America 18 months after the COVID-19 pandemic: A survey of the Latin American Thoracic Association. Chron. Respir. Dis. 2022, 19, 14799731221104102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
PARAMETERS | Before | After | p Value |
---|---|---|---|
Age (years) | 45.44 (3.5) | 46.52 (3.1) | 0.2737 |
Weight (kg) | 74.03 (4.2) | 65.89 (6.3) | 0.0002 |
Height (m) | 1.68 (4.2) | 1.68 (4.6) | 0.5086 |
BMI (kg/m2) | 30.43 (2.3) | 25.88 (3.5) | 0.0002 |
Systolic blood pressure (mmHg) | 142.1(1.4) | 118.1(1.4) | 0.0002 |
Diastolic blood pressure (mmHg) | 95.4 (0.7) | 74.4 (0.9) | 0.0002 |
Waist circumference (cm) | 92.24 (4.7) | 78.85 (1.6) | 0.0004 |
Total leukocytes (cells/mm3) | 7.96 (2.0) | 6.22 (2.7) | 0.5940 |
Basophils (cells/mm3) | 34.5 (7.0) | 26.8 (8.7) | 0.0089 |
Monocytes (cells/mm3) | 414.5 (4.1) | 218.42 (3.2) | 0.0026 |
Eosinophils (cells/mm3) | 158.22 (2.6) | 146.42 (2.8) | 0.7044 |
Lymphocytes (cells/mm3) | 3.5 (2.4) | 2.46 (2.8) | 0.2544 |
Neutrophils (cells/mm3) | 4.25 (2.3) | 2.52 (2.3) | 0.0004 |
NLR (cells/mm3) | 10.31 (0.54) | 1.88 (0.21) | 0.0001 |
Resting heart rate (bpm) | 112.2 (3.2) | 85.6 (2.5) | 0.0001 |
Fat mass (%) | 42.57 (4.2) | 35.89 (2.4) | 0.0001 |
Fat free mass (%) | 62.35 (3.5) | 64.48 (4.6) | 0.0002 |
Resting SpO2% | 92.05 (0.6) | 97.25 (0.8) | 0.0001 |
FeNO (ppb) | 4.07 (1.2) | 10.02 (1.2) | 0.0001 |
Sex (M/F) # | 14/19 | ||
Grip strength (Kg/force) | 40 (5.7) | 65 (4.6) | 0.0005 |
MIP (cmH2O) | −40.35 (8.9) | −68.35 (7.6) | 0.0001 |
MEP (cmH2O) | 70.06 (6.3) | 95.3(5.8) | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandao-Rangel, M.A.R.; Brill, B.; Furtado, G.E.; Freitas-Rolim, C.C.L.; Silva-Reis, A.; Souza-Palmeira, V.H.; Moraes-Ferreira, R.; Lopes-Silva, V.; Albertini, R.; Fernandes, W.S.; et al. Exercise-Driven Comprehensive Recovery: Pulmonary Rehabilitation’s Impact on Lung Function, Mechanics, and Immune Response in Post-COVID-19 Patients. Infect. Dis. Rep. 2025, 17, 1. https://doi.org/10.3390/idr17010001
Brandao-Rangel MAR, Brill B, Furtado GE, Freitas-Rolim CCL, Silva-Reis A, Souza-Palmeira VH, Moraes-Ferreira R, Lopes-Silva V, Albertini R, Fernandes WS, et al. Exercise-Driven Comprehensive Recovery: Pulmonary Rehabilitation’s Impact on Lung Function, Mechanics, and Immune Response in Post-COVID-19 Patients. Infectious Disease Reports. 2025; 17(1):1. https://doi.org/10.3390/idr17010001
Chicago/Turabian StyleBrandao-Rangel, Maysa Alves Rodrigues, Boris Brill, Guilherme Eustáquio Furtado, Catharine Cássia Lanna Freitas-Rolim, Anamei Silva-Reis, Victor Hugo Souza-Palmeira, Renilson Moraes-Ferreira, Vanessa Lopes-Silva, Regiane Albertini, Wendel Simões Fernandes, and et al. 2025. "Exercise-Driven Comprehensive Recovery: Pulmonary Rehabilitation’s Impact on Lung Function, Mechanics, and Immune Response in Post-COVID-19 Patients" Infectious Disease Reports 17, no. 1: 1. https://doi.org/10.3390/idr17010001
APA StyleBrandao-Rangel, M. A. R., Brill, B., Furtado, G. E., Freitas-Rolim, C. C. L., Silva-Reis, A., Souza-Palmeira, V. H., Moraes-Ferreira, R., Lopes-Silva, V., Albertini, R., Fernandes, W. S., Ferreira, S. C., Ferreira, R. C. A., Mateus-Silva, J. R., Oliveira, C. R., Frison, C. R., & Vieira, R. P. (2025). Exercise-Driven Comprehensive Recovery: Pulmonary Rehabilitation’s Impact on Lung Function, Mechanics, and Immune Response in Post-COVID-19 Patients. Infectious Disease Reports, 17(1), 1. https://doi.org/10.3390/idr17010001