Novel Computed Tomography Perfusion and Laboratory Indices as Predictors of Long-Term Outcome and Survival in Acute Ischemic Stroke
Abstract
1. Introduction
1.1. Evolving Role of Computed Tomography Perfusion (CTP) in Acute Ischemic Stroke
1.2. Aim of the Study
2. Materials and Methods
2.1. Study Design and Setting
2.2. Clinical and Demographic Data Collection
2.3. CT Perfusion Acquisition Protocol
2.4. Introduction of Novel Indices
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Clinical Outcomes at 24 h, 3 Months, and 1 Year
3.3. Associations Between Perfusion and Inflammation–Coagulation Indices and Functional Outcomes
3.4. Regression Analysis of Long-Term Outcomes
3.5. Survival Analysis
4. Discussion
4.1. Interpretation of HIR-MTT–TTD
4.2. Prognostic Value of ICI
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HIR | Hypoperfusion intensity ratio |
CTP | Computed tomography perfusion |
ICI | Inflammation and coagulation index |
CRP | C-reactive protein |
WBC | White blood count |
NIHSS | National Institutes of Health Stroke Scale |
mRS | Modified Rankin Scale |
CT | Computed tomography |
WUS | Wake-up stroke |
SUKO | Stroke of unknown onset |
ETW | Extended therapeutic window |
AHA/ASA | The American Heart Association/American Stroke Association |
DWI-MRI | Diffusion-weighted magnetic resonance imaging |
rCBF | Relative cerebral blood flow |
MTT | Mean transit time |
TTD | Time-to-drain |
Tmax | Time-to-maximum |
IVT | Intravenous thrombolysis |
CBF | Cerebral blood flow |
CBV | Cerebral blood volume |
HR | Hazard ratio |
CI | Confidence interval |
AIC | Akaike Information Criterion |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
BMI | Body mass index |
IQR | Interquartile range |
CVD | Cardiovascular disease |
CTA | Computed tomography angiography |
LVO | Large vessel occlusion |
NLR | Neutrophil-to-lymphocyte ratio |
Appendix A
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke 2025, 20, 132–144. [Google Scholar] [CrossRef]
- Zhu, H. A Large-Scale Prospective Study on Functional Ability and Mortality Following Stroke Based on HRS Data Set: Implications for Rehabilitation. Front. Psychol. 2022, 13, 915653. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, A.; Kaiser, D.P.O.; Cuberi, A.; Schreckenbauer, S.; Wojciechowski, C.; Friehs, I.; Reichmann, H.; Barlinn, J.; Barlinn, K.; Puetz, V.; et al. Intravenous Thrombolysis Before Thrombectomy Improves Functional Outcome After Stroke Independent of Reperfusion Grade. J. Am. Heart Assoc. 2024, 13, e031854. [Google Scholar] [CrossRef]
- Winder, A.J.; Wilms, M.; Amador, K.; Flottmann, F.; Fiehler, J.; Forkert, N.D. Predicting the tissue outcome of acute ischemic stroke from acute 4D computed tomography perfusion imaging using temporal features and deep learning. Front. Neurosci. 2022, 16, 1009654. [Google Scholar] [CrossRef] [PubMed]
- Heiss, W.-D.; Kidwell, C.S. Imaging for Prediction of Functional Outcome and Assessment of Recovery in Ischemic Stroke. Stroke 2014, 45, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Harston, G.W.J.; Rane, N.; Shaya, G.; Thandeswaran, S.; Cellerini, M.; Sheerin, F.; Kennedy, J. Imaging biomarkers in acute ischemic stroke trials: A systematic review. AJNR Am. J. Neuroradiol. 2015, 36, 839–843. [Google Scholar] [CrossRef]
- Geng, H.-H.; Wang, X.-W.; Fu, R.-L.; Jing, M.-J.; Huang, L.-L.; Zhang, Q.; Wang, X.-X.; Wang, P.-X. The Relationship between C-Reactive Protein Level and Discharge Outcome in Patients with Acute Ischemic Stroke. Int. J. Environ. Res. Public Health 2016, 13, 636. [Google Scholar] [CrossRef]
- Huţanu, A.; Iancu, M.; Bălaşa, R.; Maier, S.; Dobreanu, M. Predicting functional outcome of ischemic stroke patients in Romania based on plasma CRP, sTNFR-1, D-Dimers, NGAL and NSE measured using a biochip array. Acta Pharmacol. Sin. 2018, 39, 1228–1236. [Google Scholar] [CrossRef]
- Sabbah, A.; Elsayed, M.; Helmy, H.; Mostafa, R.H.; Hatem, G. The role of blood protein biomarkers in acute ischemic stroke prognosis. Egypt. J. Neurol. Psychiatr. Neurosurg. 2024, 60, 55. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, A.; Lai, T.; Wang, S.; Lu, W.; Wang, M.; Zhu, Y. Predictive Value of Dynamic Changes in Inflammatory Markers Within 24 Hours After Mechanical Thrombectomy for Outcome in Patients with Acute Ischemic Stroke. World Neurosurg. 2025, 196, 123693. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Tao, J.; Song, Y.; Fan, Y.; Gou, M.; Xu, J. Prognostic role of early D-dimer level in patients with acute ischemic stroke. PLoS ONE 2019, 14, e0211458. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Yang, T.; Yan, T.; Cheng, W.; Bu, X. Relationships Between D-Dimer Levels and Stroke Risk as Well as Adverse Clinical Outcomes After Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 670730. [Google Scholar] [CrossRef]
- Demeestere, J.; Wouters, A.; Christensen, S.; Lemmens, R.; Lansberg, M.G. Review of Perfusion Imaging in Acute Ischemic Stroke: From Time to Tissue. Stroke 2020, 51, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Chalet, L.; Boutelier, T.; Christen, T.; Raguenez, D.; Debatisse, J.; Eker, O.F.; Becker, G.; Nighoghossian, N.; Cho, T.-H.; Canet-Soulas, E.; et al. Clinical Imaging of the Penumbra in Ischemic Stroke: From the Concept to the Era of Mechanical Thrombectomy. Front. Cardiovasc. Med. 2022, 9, 861913. [Google Scholar] [CrossRef]
- Dhillon, P.S.; White, P.; Goyal, M.; van Zwam, W.H.; Lenthall, R. Perfusion imaging in acute ischaemic stroke—The beginning of the end? Clin. Med. 2023, 23, 185–186. [Google Scholar] [CrossRef]
- Rehani, B.; Ammanuel, S.G.; Zhang, Y.; Smith, W.; Cooke, D.L.; Hetts, S.W.; Josephson, S.A.; Kim, A.; Hemphill, J.C., 3rd; Dillon, W. A New Era of Extended Time Window Acute Stroke Interventions Guided by Imaging. Neurohospitalist 2020, 10, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Caruso, P.; Naccarato, M.; Furlanis, G.; Ajčević, M.; Stragapede, L.; Ridolfi, M.; Polverino, P.; Ukmar, M.; Manganotti, P. Wake-up stroke and CT perfusion: Effectiveness and safety of reperfusion therapy. Neurol. Sci. 2018, 39, 1705–1712. [Google Scholar] [CrossRef]
- Inoue, M.; Yoshimoto, T.; Tanaka, K.; Koge, J.; Shiozawa, M.; Nishii, T.; Ohta, Y.; Fukuda, T.; Satow, T.; Kataoka, H.; et al. Mechanical Thrombectomy Up to 24 Hours in Large Vessel Occlusions and Infarct Velocity Assessment. J. Am. Heart Assoc. 2021, 10, e022880. [Google Scholar] [CrossRef]
- Dvorníková, K.; Kunešová, V.; Ely, M.; Ostrý, S.; Čábal, M.; Reiser, M.; Machová, L.; Pavlínová, M.; Kondé, A.; Eliáš, P.; et al. The importance of multimodal CT examination in stroke mimics diagnosis: Design of prospective observational multicentre study. Front. Neurol. 2024, 15, 1365986. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Campbell, B.C.V.; Parsons, M.W.; Churilov, L.; Levi, C.R.; Hsu, C.; Kleinig, T.J.; Wijeratne, T.; Curtze, S.; Dewey, H.M.; et al. Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N. Engl. J. Med. 2019, 380, 1795–1803. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, 211. [Google Scholar] [CrossRef]
- Yedavalli, V.; Kihira, S.; Shahrouki, P.; Hamam, O.; Tavakkol, E.; McArthur, M.; Qiao, J.; Johanna, F.; Doshi, A.; Vagal, A.; et al. CTP-based estimated ischemic core: A comparative multicenter study between Olea and RAPID software. J. Stroke Cerebrovasc. Dis. 2023, 32, 107297. [Google Scholar] [CrossRef]
- Sarraj, A.; Campbell, B.C.V.; Christensen, S.; Sitton, C.W.; Khanpara, S.; Riascos, R.F.; Pujara, D.; Shaker, F.; Sharma, G.; Lansberg, M.G.; et al. Accuracy of CT Perfusion–Based Core Estimation of Follow-up Infarction. Neurology 2022, 98, e2084–e2096. [Google Scholar] [CrossRef]
- Kim, N.; Ryu, W.; Ha, S.Y.; Kim, J.Y.; Kang, J.; Baik, S.H.; Jung, C.; Han, M.-K.; Bae, H.-J.; Lin, L.; et al. Optimal Cerebral Blood Flow Thresholds for Ischemic Core Estimation Using Computed Tomography Perfusion and Diffusion-Weighted Imaging. Ann. Neurol. 2025, 97, 919–929. [Google Scholar] [CrossRef]
- Lin, M.P.; Liebeskind, D.S. Imaging of Ischemic Stroke. Continuum 2016, 22, 1399–1423. [Google Scholar] [CrossRef]
- Jia, J.; Jin, Z.; Dong, J.; Huang, J.; Wang, Y.; Liu, Y. Synergistic insights: The integrated role of CT/CTP and clinical parameters in hemorrhagic transformation prediction. Aging 2024, 16, 11577–11590. [Google Scholar] [CrossRef]
- Lyden, P. Using the National Institutes of Health Stroke Scale: A Cautionary Tale. Stroke 2017, 48, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.J.; Langhorne, P.; Stott, D.J. Barthel Index for Stroke Trials. Stroke 2011, 42, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Pożarowszczyk, N.; Kurkowska-Jastrzębska, I.; Sarzyńska-Długosz, I.; Nowak, M.; Karliński, M. Reliability of the modified Rankin Scale in clinical practice of stroke units and rehabilitation wards. Front. Neurol. 2023, 14, 1064642. [Google Scholar] [CrossRef] [PubMed]
- Dallessio, K.M. Latest advances in multislice CT technology. Appl. Radiol. 2004, 33, 44–47. [Google Scholar] [CrossRef]
- M’barek, L.; Jin, A.; Pan, Y.; Lin, J.; Jiang, Y.; Meng, X.; Wang, Y. Stroke Prognosis: The Impact of Combined Thrombotic, Lipid, and Inflammatory Markers. J. Atheroscler. Thromb. 2025, 32, 458–473. [Google Scholar] [CrossRef]
- Luo, G.-B.; Yan, D.-L.; Luo, C.-L.; Jiang, S.-S.; Wang, Z.-J.; Li, X.-S. Correlation Between Serum D-Dimer, NLR, and CRP/ALB in Patients with Acute Ischemic Stroke. Int. J. Gen. Med. 2025, 18, 2749–2756. [Google Scholar] [CrossRef]
- Rexrode, K.M.; Madsen, T.E.; Yu, A.Y.X.; Carcel, C.; Lichtman, J.H.; Miller, E.C. The Impact of Sex and Gender on Stroke. Circ. Res. 2022, 130, 512–528. [Google Scholar] [CrossRef]
- Sun, A.; Cao, Y.; Jia, Z.; Zhao, L.; Shi, H.; Liu, S. Evaluating the prognostic impact of hypoperfusion intensity ratio in acute ischemic stroke patients undergoing early-phase endovascular thrombectomy. Medicine 2024, 103, e40679. [Google Scholar] [CrossRef]
- Lyndon, D.; van den Broek, M.; Niu, B.; Yip, S.; Rohr, A.; Settecase, F. Hypoperfusion Intensity Ratio Correlates with CTA Collateral Status in Large-Vessel Occlusion Acute Ischemic Stroke. AJNR Am. J. Neuroradiol. 2021, 42, 1380–1386. [Google Scholar] [CrossRef]
- Miller, M.M.; Wideman, B.; Khan, M.; Henninger, N. Hypoperfusion Intensity Ratio Is Associated with Early Neurologic Deficit Severity and Deterioration after Mechanical Thrombectomy in Large-Vessel Occlusion Ischemic Stroke. Am. J. Neuroradiol. 2024, 45, 879–886. [Google Scholar] [CrossRef]
- You, J.; Li, X.; Xia, J.; Li, H.; Wang, J. Hypoperfusion Intensity Ratio and Hemorrhagic Transformation in Patients with Successful Recanalization after Thrombectomy. Am. J. Neuroradiol. 2024, 45, 1475–1481. [Google Scholar] [CrossRef]
- Edwards, L.S.; Cappelen-Smith, C.; Cordato, D.; Bivard, A.; Churilov, L.; Parsons, M.W. Review of CT perfusion and current applications in posterior circulation stroke. Vessel. Plus 2021, 5, 42. [Google Scholar] [CrossRef]
- Thierfelder, K.M.; Sommer, W.H.; Baumann, A.B.; Klotz, E.; Meinel, F.G.; Strobl, F.F.; Nikolaou, K.; Reiser, M.F.; von Baumgarten, L. Whole-brain CT perfusion: Reliability and reproducibility of volumetric perfusion deficit assessment in patients with acute ischemic stroke. Neuroradiology 2013, 55, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Ossa, G.A.; Lobo, C.; Garcia-Ballestas, E.; Florez, W.A.; Moscore-Salazar, L.R.; Agrawal, A. Obesity and Stroke: Does the Paradox Apply for Stroke? Neurointervention 2021, 16, 9–19. [Google Scholar] [CrossRef]
- Idicula, T.T.; Brogger, J.; Naess, H.; Waje-Andreassen, U.; Thomassen, L. Admission C—Protein after acute ischemic stroke is associated with stroke severity and mortality: The „Bergen stroke study“. BMC Neurol. 2009, 9, 18. [Google Scholar] [CrossRef]
- Nam, K.-W.; Kwon, H.-M.; Lee, Y.-S. Clinical significance of D-dimer levels during acute period in ischemic stroke. Thromb. J. 2023, 21, 55. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Wu, J.; Zhang, S. A Systematic Review of the Predictive Value of Plasma D-Dimer Levels for Predicting Stroke Outcome. Front. Neurol. 2021, 12, 693524. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.P.; Kristiansen, M.H.; Hasselbalch, H.C.; Wienecke, T. Elevated white blood cell counts in ischemic stroke patients are associated with increased mortality and new vascular events. Front. Neurol. 2023, 14, 1232557. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Huang, Y.; Wang, Y.; Huang, Z.; Zhu, Y.; Shi, R.; Sun, Y.; Qin, Y.; Cao, Y.; Zhang, X. Combined prognostic significance of white blood cell count and D-dimer on in-hospital outcomes of acute ischemic stroke. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 177–184. [Google Scholar] [CrossRef]
- Ghosh, A.; Pal, R.; Mishra, R.; Cincu, R.; Moscote-Salazar, L.R.; Agrawal, A. Leukocyte neutrophil ratio (NLR) as biomarker for neuroinflammation in patients with intracerebral haemorrhage and traumatic brain injury. Rom. J. Neurol. 2021, 20, 296–299. [Google Scholar] [CrossRef]
- Begunova, Y.; Bartolome, D.; Kobsa, J.; Prasad, A.; Soto, A.; Quispe-Orozco, D.; Farooqui, M.; Zevallos, C.; Sansing, L.H.; Schindler, J.L.; et al. Abstract 91: Large Vessel Occlusion Stroke Patients with Rapid Early Infarct Progression And Poor Collaterals Are Vulnerable To Blood Pressure Reductions. Stroke 2022, 53, A91. [Google Scholar] [CrossRef]
Characteristic | Overall N = 60 | Alive N = 46 | Death N = 14 | p Value |
---|---|---|---|---|
Age 1 | 72 (62, 79) | 70 (60, 76) | 85 (72, 91) | <0.01 |
Sex, male 2 | 30 (50%) | 24 (52%) | 6 (43%) | 0.5 |
BMI 1,3 | 25.7 (21.7, 29.9) | 26.8 (23.7, 31.6) | 20.6 (18.6, 25.7) | <0.01 |
Systolic blood pressure 1,4 | 140 (120, 160) | 140 (130, 170) | 140 (120, 140) | 0.2 |
Diastolic blood pressure 1,4 | 80 (75, 100) | 80 (80, 100) | 80 (70, 90) | 0.3 |
Active smokers 3 | 24 (40%) | 18 (39%) | 6 (43%) | 0.8 |
Stroke type 3 | ||||
WUS | 11 (18%) | 7 (15%) | 4 (29%) | 0.3 |
SUO | 5 (8.3%) | 2 (4.3%) | 3 (21%) | 0.08 |
ETW | 14 (23%) | 10 (22%) | 4 (29%) | 0.7 |
Comorbidities 3 | ||||
Diabetes | 44 (73%) | 33 (72%) | 11 (79%) | 0.7 |
Pre-existing CVD | 58 (97%) | 44 (96%) | 14 (100%) | >0.9 |
MTT penumbra volume 1,5 | 20 (14, 25) | 19 (15, 25) | 20 (13, 24) | 0.5 |
MTT infarct volume 1,5 | 5.0 (3.1, 8.0) | 4.6 (2.9, 7.1) | 6.3 (4.0, 11.0) | 0.06 |
TTD penumbra volume 1,5 | 20 (14, 25) | 19 (15, 25) | 20 (13, 24) | 0.5 |
TTD infarct volume 1,5 | 5.3 (3.2, 8.3) | 5.0 (3.0, 7.8) | 6.3 (4.0, 11.0) | 0.09 |
CRP 1,6 | 12 (5, 44) | 10 (4, 21) | 35 (16, 56) | 0.01 |
D-dimer 1,7 | 1.6 (0.5, 4.6) | 1.1 (0.5, 3.2) | 4.7 (2.0, 9.8) | 0.01 |
WBC 1,8 | 8.76 (7.12, 11.85) | 8.76 (7.12, 11.39) | 8.86 (7.23, 12.40) | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halil, E.; Kostadinov, K.; Traykova, N.; Atanasova, N.; Atliev, K.; Dzhambazova, E.; Atanassova, P. Novel Computed Tomography Perfusion and Laboratory Indices as Predictors of Long-Term Outcome and Survival in Acute Ischemic Stroke. Neurol. Int. 2025, 17, 136. https://doi.org/10.3390/neurolint17090136
Halil E, Kostadinov K, Traykova N, Atanasova N, Atliev K, Dzhambazova E, Atanassova P. Novel Computed Tomography Perfusion and Laboratory Indices as Predictors of Long-Term Outcome and Survival in Acute Ischemic Stroke. Neurology International. 2025; 17(9):136. https://doi.org/10.3390/neurolint17090136
Chicago/Turabian StyleHalil, Eray, Kostadin Kostadinov, Nikoleta Traykova, Neli Atanasova, Kiril Atliev, Elizabet Dzhambazova, and Penka Atanassova. 2025. "Novel Computed Tomography Perfusion and Laboratory Indices as Predictors of Long-Term Outcome and Survival in Acute Ischemic Stroke" Neurology International 17, no. 9: 136. https://doi.org/10.3390/neurolint17090136
APA StyleHalil, E., Kostadinov, K., Traykova, N., Atanasova, N., Atliev, K., Dzhambazova, E., & Atanassova, P. (2025). Novel Computed Tomography Perfusion and Laboratory Indices as Predictors of Long-Term Outcome and Survival in Acute Ischemic Stroke. Neurology International, 17(9), 136. https://doi.org/10.3390/neurolint17090136