Management of Myasthenic Crisis and Emerging Roles of Molecularly Targeted Therapies: A Narrative Review
Abstract
1. Introduction
2. Conventional Treatments for MG, Including Myasthenic Crisis
2.1. Immunopathological Mechanisms of Myasthenia Gravis
2.2. Therapeutic Targets for MG
2.3. Comparison of FcRn Inhibitors and Complement Inhibitors
2.4. Conventional Treatments and Limitations in Myasthenic Crisis
3. Novel Options for MCr Treatments: Current Status and Perspectives of Molecularly Targeted Therapies in MCr
3.1. FcRn Inhibitors and MCr
3.2. Complement Inhibitors and MCr
4. Treatment Selection in MCr
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fichtner, M.L.; Jiang, R.; Bourke, A.; Nowak, R.J.; O’Connor, K.C. Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front. Immunol. 2020, 11, 776. [Google Scholar] [CrossRef]
- Wendell, L.C.; Levine, J.M. Myasthenic crisis. Neurohospitalist 2011, 1, 16–22. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Adachi, Y.; Nakamura, Y.; Kuriyama, N.; Murai, H.; Nomura, Y.; Sakai, Y.; Iwasa, K.; Furukawa, Y.; Kuwabara, S.; et al. Two-step nationwide epidemiological survey of myasthenia gravis in Japan 2018. PLoS ONE 2022, 17, e0274161. [Google Scholar] [CrossRef]
- Gilhus, N.E.; Tzartos, S.; Evoli, A.; Palace, J.; Burns, T.M.; Verschuuren, J. Myasthenia gravis. Nat. Rev. Dis. Primers 2019, 5, 30. [Google Scholar] [CrossRef]
- Evoli, A.; Tonali, P.A.; Padua, L.; Monaco, M.L.; Scuderi, F.; Batocchi, A.P.; Marino, M.; Bartoccioni, E. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 2003, 126, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Xing, G.L.; Xiong, W.C.; Mei, L. Agrin and LRP4 antibodies as new biomarkers of myasthenia gravis. Ann. N. Y. Acad. Sci. 2018, 1413, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A. Epidemiology of thymoma and associated malignancies. J. Thorac. Oncol. 2010, 5, S260–S265. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.; Nabavi Nouri, M.; Ng, E.; Nwe, P.; Bril, V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 2011, 76, 2017–2023. [Google Scholar] [CrossRef]
- Zinman, L.; Ng, E.; Bril, V. IV immunoglobulin in patients with myasthenia gravis: A randomized controlled trial. Neurology 2007, 68, 837–841. [Google Scholar] [CrossRef]
- Gajdos, P.; Chevret, S.; Toyka, K. Plasma exchange for myasthenia gravis. Cochrane Database Syst. Rev. 2002, 2002, CD002275. [Google Scholar] [CrossRef]
- Howard, J.F., Jr.; Bril, V.; Vu, T.; Karam, C.; Peric, S.; Margania, T.; Murai, H.; Bilinska, M.; Shakarishvili, R.; Smilowski, M.; et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): A multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021, 20, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Lefeuvre, C.M.; Payet, C.A.; Fayet, O.M.; Maillard, S.; Truffault, F.; Bondet, V.; Duffy, D.; de Montpreville, V.; Ghigna, M.R.; Fadel, E.; et al. Risk factors associated with myasthenia gravis in thymoma patients: The potential role of thymic germinal centers. J. Autoimmun. 2020, 106, 102337. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhou, L.; Miao, F.; Chen, G.; Zhu, Y.; Gao, X.; Wang, Y.; Pang, L.; Zhao, C.; Sun, X.; et al. Increased frequency of thymic T follicular helper cells in myasthenia gravis patients with thymoma. J. Thorac. Dis. 2016, 8, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Shiono, H.; Wong, Y.L.; Matthews, I.; Liu, J.L.; Zhang, W.; Sims, G.; Meager, A.; Beeson, D.; Vincent, A.; Willcox, N. Spontaneous production of anti-IFN-α and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor. Int. Immunol. 2003, 15, 903–913. [Google Scholar]
- Hiepe, F.; Dorner, T.; Hauser, A.E.; Hoyer, B.F.; Mei, H.; Radbruch, A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 2011, 7, 170–178. [Google Scholar] [CrossRef]
- Yip, V.; Palma, E.; Tesar, D.B.; Mundo, E.E.; Bumbaca, D.; Torres, E.K.; Reyes, N.A.; Shen, B.Q.; Fielder, P.J.; Prabhu, S.; et al. Quantitative cumulative biodistribution of antibodies in mice: Effect of modulating binding affinity to the neonatal Fc receptor. MAbs 2014, 6, 689–696. [Google Scholar] [CrossRef]
- Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, 1540. [Google Scholar] [CrossRef]
- Vincent, A.; Palace, J.; Hilton-Jones, D. Myasthenia gravis. Lancet 2001, 357, 2122–2128. [Google Scholar] [CrossRef]
- Leonardi, L.; La Torre, F.; Soresina, A.; Federici, S.; Cancrini, C.; Castagnoli, R.; Cinicola, B.L.; Corrente, S.; Giardino, G.; Lougaris, V.; et al. Inherited defects in the complement system. Pediatr. Allergy Immunol. 2022, 33 (Suppl. S27), 73–76. [Google Scholar] [CrossRef]
- Bayly-Jones, C.; Bubeck, D.; Dunstone, M.A. The mystery behind membrane insertion: A review of the complement membrane attack complex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160221. [Google Scholar] [CrossRef]
- Huda, R.; Tuzun, E.; Christadoss, P. Targeting complement system to treat myasthenia gravis. Rev. Neurosci. 2014, 25, 575–583. [Google Scholar] [CrossRef]
- Huang, Y.F.; Sandholm, K.; Persson, B.; Nilsson, B.; Punga, A.R. Visualization and characterization of complement activation in acetylcholine receptor antibody seropositive myasthenia gravis. Muscle Nerve 2024, 70, 851–861. [Google Scholar] [CrossRef]
- Çebi, M.; Durmuş, H.; Yılmaz, V.; Yentür, S.P.; Aysal, F.; Oflazer, P.; Parman, Y.; Deymeer, F.; Saruhan-Direskeneli, G. Relation of HLA-DRB1 to IgG4 autoantibody and cytokine production in muscle-specific tyrosine kinase myasthenia gravis (MuSK-MG). Clin. Exp. Immunol. 2019, 197, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Meriggioli, M.N.; Sanders, D.B. Muscle autoantibodies in myasthenia gravis: Beyond diagnosis? Expert. Rev. Clin. Immunol. 2012, 8, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Ching, J.; Richards, D.; Lewis, R.A.; Li, Y. Myasthenia gravis exacerbation in association with antibody overshoot following plasmapheresis. Muscle Nerve 2021, 64, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.F.; Albuquerque, E.X.; Rash, J.E.; Hudson, C.S. Neuromusclar junction and myasthenic crisis. Trans. Am. Neurol. Assoc. 1977, 102, 100–104. [Google Scholar]
- Huan, X.; Luo, S.; Zhong, H.; Zheng, X.; Song, J.; Zhou, L.; Lu, J.; Wang, Y.; Xu, Y.; Xi, J. In-depth peripheral CD4+ T profile correlates with myasthenic crisis. Ann. Clin. Transl. Neurol. 2021, 8, 749–762. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Schreiber, S.L.; Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 1992, 13, 136–142. [Google Scholar] [CrossRef]
- Patil, V.; Kaveri, S. The mechanisms of action of IVIG in autoimmune and inflammatory diseases. ISBT Sci. Ser. 2013, 8, 185–188. [Google Scholar] [CrossRef]
- Komiyama, A.; Arai, H.; Kijima, M.; Hirayama, K. Extraocular muscle responses to high dose intravenous methylprednisolone in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2000, 68, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Soltys, J.; Gong, B.; Kaminski, H.J.; Zhou, Y.; Kusner, L.L. Extraocular muscle susceptibility to myasthenia gravis: Unique immunological environment? Ann. N. Y. Acad. Sci. 2008, 1132, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, C.; Andersen, O.; Lefvert, A.K. Treatment of myasthenia gravis with methylprednisolone pulse: A double blind study. Acta Neurol. Scand. 1998, 97, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.F., Jr.; Utsugisawa, K.; Benatar, M.; Murai, H.; Barohn, R.J.; Illa, I.; Jacob, S.; Vissing, J.; Burns, T.M.; Kissel, J.T.; et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): A phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017, 16, 976–986. [Google Scholar] [CrossRef]
- Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 2019, 18, 707–729. [Google Scholar] [CrossRef]
- Ulrichts, P.; Guglietta, A.; Dreier, T.; van Bragt, T.; Hanssens, V.; Hofman, E.; Vankerckhoven, B.; Verheesen, P.; Ongenae, N.; Lykhopiy, V.; et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J. Clin. Investig. 2018, 128, 4372–4386. [Google Scholar] [CrossRef]
- Di Stefano, V.; Alonge, P.; Rini, N.; Militello, M.; Lupica, A.; Torrente, A.; Brighina, F. Efgartigimod beyond myasthenia gravis: The role of FcRn-targeting therapies in stiff-person syndrome. J. Neurol. 2024, 271, 254–262. [Google Scholar] [CrossRef]
- Watanabe, K.; Takahashi, S.; Kanda, A.; Watanabe, T.; Kakinuma, Y.; Yano, S.; Kinno, R. Case Report: Therapeutic effect of efgartigimod in refractory anti-GQ1b antibody syndrome coexisting with myasthenia gravis. Front. Immunol. 2025, 16, 1605985. [Google Scholar] [CrossRef]
- Takenobu, Y.; Ikeda, K.; Hasebe, S.; Nomura, N.; Tamaki, S.; Yukawa, K.; Miyahara, J.; Yamakawa, K.; Inoue, M. Rapid response of eculizumab: A rescue therapy for ventilator-dependent refractory myasthenic crisis. Immunol. Med. 2025; in press. [Google Scholar] [CrossRef]
- Konen, F.F.; Jendretzky, K.F.; Ratuszny, D.; Schuppner, R.; Suhs, K.W.; Pawlitzki, M.; Ruck, T.; Meuth, S.G.; Skripuletz, T. Ravulizumab in myasthenic crisis: The first case report. J. Neurol. 2024, 271, 2898–2901. [Google Scholar] [CrossRef]
- Ito, S.; Sugimoto, T.; Naito, H.; Aoki, S.; Nakamori, M.; Miyachi, T.; Yamazaki, Y.; Maruyama, H. Zilucoplan for Successful Early Weaning From Mechanical Ventilation and Avoiding Tracheostomy in an 85-Year-Old Woman Experiencing Myasthenic Crisis: A Case Report. Cureus 2025, 17, e80203. [Google Scholar] [CrossRef]
- Vu, T.; Wiendl, H.; Katsuno, M.; Reddel, S.W.; Howard, J.F., Jr. Ravulizumab in Myasthenia Gravis: A Review of the Current Evidence. Neuropsychiatr. Dis. Treat. 2023, 19, 2639–2655. [Google Scholar] [CrossRef]
- Matsumura, Y. Risk Analysis of Eculizumab-Related Meningococcal Disease in Japan Using the Japanese Adverse Drug Event Report Database. Drug Healthc. Patient Saf. 2020, 12, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Beebeejaun, K.; Parikh, S.R.; Campbell, H.; Gray, S.; Borrow, R.; Ramsay, M.E.; Ladhani, S.N. Invasive meningococcal disease: Timing and cause of death in England, 2008-2015. J Infect 2020, 80, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Choudhry, M.A.; Akbar, M.S.; Mohammad, Y.; Chua, H.C.; Yahia, A.M.; Ulatowski, J.A.; Krendel, D.A.; Leshner, R.T. Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis. Neurology 1999, 52, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Liu, Q.; Zhang, X.; Wen, X.; Lei, L.; Shen, F.; Fan, Z.; Duo, J.; Lu, Y.; Di, L. VNTR2/VNTR3 genotype in the FCGRT gene is associated with reduced effectiveness of intravenous immunoglobulin in patients with myasthenia gravis. Ther. Adv. Neurol. Disord. 2021, 14, 1756286420986747. [Google Scholar] [CrossRef]
- Murai, H.; Utsugisawa, K.; Motomura, M.; Imai, T.; Uzawa, A.; Suzuki, S. The Japanese clinical guidelines 2022 for myasthenia gravis and Lambert–Eaton myasthenic syndrome. Clin. Exp. Neuroimmunol. 2023, 14, 19–27. [Google Scholar] [CrossRef]
- Howard, J.F., Jr.; Vu, T.; Li, G.; Korobko, D.; Smilowski, M.; Liu, L.; Gistelinck, F.; Steeland, S.; Noukens, J.; Van Hoorick, B.; et al. Subcutaneous efgartigimod PH20 in generalized myasthenia gravis: A phase 3 randomized noninferiority study (ADAPT-SC) and interim analyses of a long-term open-label extension study (ADAPT-SC+). Neurotherapeutics 2024, 21, e00378. [Google Scholar] [CrossRef]
- Meisel, A.; Annane, D.; Vu, T.; Mantegazza, R.; Katsuno, M.; Aguzzi, R.; Frick, G.; Gault, L.; Howard, J.F., Jr.; Group, C.M.S. Long-term efficacy and safety of ravulizumab in adults with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis: Results from the phase 3 CHAMPION MG open-label extension. J. Neurol. 2023, 270, 3862–3875. [Google Scholar] [CrossRef]
- Howard, J.F., Jr.; Bresch, S.; Genge, A.; Hewamadduma, C.; Hinton, J.; Hussain, Y.; Juntas-Morales, R.; Kaminski, H.J.; Maniaol, A.; Mantegazza, R.; et al. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Neurol. 2023, 22, 395–406. [Google Scholar] [CrossRef]
- Bril, V.; Druzdz, A.; Grosskreutz, J.; Habib, A.A.; Mantegazza, R.; Sacconi, S.; Utsugisawa, K.; Vissing, J.; Vu, T.; Boehnlein, M.; et al. Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): A randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol. 2023, 22, 383–394. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, H.; Zhao, J.; Su, M.; Feng, Y.; Yuan, X.; Liu, D.; Pang, X.; Zhao, R.; Wang, J.; et al. Efgartigimod versus intravenous immunoglobulin in the treatment of patients with impending myasthenic crisis. Sci. Rep. 2024, 14, 28394. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Rozanolixizumab in generalized myasthenia gravis: A profile of its use. Drugs Ther. Perspect. 2024, 40, 203–210. [Google Scholar] [CrossRef]
- Kawama, K.; Warabi, Y.; Bokuda, K.; Kimura, H.; Takahashi, K. Exacerbation of Thymoma-Associated Myasthenia Gravis Following Efgartigimod Treatment Related to Anti-acetylcholine Receptor Antibody Overshoot: A Report of Two Cases. Cureus 2023, 15, e50692. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Ohashi, S.; Watanabe, T.; Kakinuma, Y.; Kinno, R. Case report: Recovery from refractory myasthenic crisis to minimal symptom expression after add-on treatment with efgartigimod. Front. Neurol. 2024, 15, 1321058. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Luo, T.; Du, X.; Wang, Z.; Huang, X.; Zhang, Y. Rescue treatment with add-on efgartigimod in a patient with impending myasthenic crisis: A case report. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241254895. [Google Scholar] [CrossRef]
- Alhaj Omar, O.; Diel, N.J.; Gerner, S.T.; Mück, A.; Huttner, H.B.; Krämer-Best, H.H. Efgartigimod as Rescue Medication in a Patient with Therapy-Refractory Myasthenic Crisis. Case Rep. Neurol. Med. 2024, 2024, 9455237. [Google Scholar] [CrossRef]
- Hong, Y.; Gao, L.; Huang, S.-Q.; Liu, S.; Feng, S.; Chen, Y.-B.; Jiang, T.; Shi, J.-Q.; Zhao, H.-D. Efgartigimod as a fast-acting add-on therapy in manifest and impending myasthenic crisis: A single-center case series. J. Neuroimmunol. 2024, 395, 578431. [Google Scholar] [CrossRef]
- Song, J.; Wang, H.; Huan, X.; Jiang, Q.; Wu, Z.; Yan, C.; Xi, J.; Zhao, C.; Feng, H.; Luo, S. Efgartigimod as a promising add-on therapy for myasthenic crisis: A prospective case series. Front. Immunol. 2024, 15, 1418503. [Google Scholar] [CrossRef]
- Morita, Y.; Osaki, Y.; Shogase, T.; Yoshimoto, D.; Terada, T.; Ohtsuru, S.; Yamasaki, K.; Hashimoto, Y.; Matsushita, T. Effective efgartigimod treatment for severe thymoma-associated myasthenia gravis experiencing myasthenic crisis: A case report. Neurol. Clin. Neurosci. 2024, 12, 312–315. [Google Scholar] [CrossRef]
- Ohara, H.; Kikutsuji, N.; Iguchi, N.; Kinoshita, M. Efgartigimod combined with steroids as a fast-acting therapy for myasthenic crisis: A case report. BMC Neurol. 2024, 24, 292. [Google Scholar] [CrossRef]
- Sorrenti, B.; Laurini, C.; Bosco, L.; Strano, C.M.M.; Scarlato, M.; Gastaldi, M.; Filippi, M.; Previtali, S.C.; Falzone, Y.M. Overcoming therapeutic challenges: Successful management of a supposedly triple seronegative, refractory generalized myasthenia gravis patient with efgartigimod. Eur. J. Neurol. 2024, 31, e16306. [Google Scholar] [CrossRef]
- Shi, F.; Chen, J.; Feng, L.; Lai, R.; Zhou, H.; Sun, X.; Shen, C.; Feng, J.; Feng, H.; Wang, H. Efgartigimod treatment in patients with anti-MuSK-positive myasthenia gravis in exacerbation. Front. Neurol. 2024, 15, 1486659. [Google Scholar] [CrossRef] [PubMed]
- Shelly, S. Case report: Successful perioperative intervention with efgartigimod in a patient in myasthenic crisis. Front. Immunol. 2025, 16, 1524200. [Google Scholar] [CrossRef] [PubMed]
- Kwiedor, I.; Menacher, M.; Ellssel, M.; Naumann, M.; Bayas, A. First line treatment with subcutaneous efgartigimod in impending myasthenic crisis: A case report. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241307687. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, J.; Yamamoto, M.; Hayashi, S.; Ohyashiki, K.; Ando, K.; Brodsky, A.L.; Noji, H.; Kitamura, K.; Eto, T.; Takahashi, T.; et al. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 2014, 370, 632–639. [Google Scholar] [CrossRef]
- Hofstadt-van Oy, U.; Stankovic, S.; Kelbel, C.; Oswald, D.; Larrosa-Lombardi, S.; Barchfeld, T.; Cleff, U. Complement inhibition initiated recovery of a severe myasthenic crisis with COVID-19. J. Neurol. 2021, 268, 3125–3128. [Google Scholar] [CrossRef]
- Usman, U.; Chrisman, C.; Houston, D.; Haws, C.C.; Wang, A.; Muley, S. The use of eculizumab in ventilator-dependent myasthenia gravis patients. Muscle Nerve 2021, 64, 212–215. [Google Scholar] [CrossRef]
- Strano, C.M.; Sorrenti, B.; Bosco, L.; Falzone, Y.M.; Fazio, R.; Filippi, M. Eculizumab as a fast-acting rescue therapy in a refractory myasthenic crisis: A case report. J. Neurol. 2022, 269, 6152–6154. [Google Scholar] [CrossRef]
- Vinciguerra, C.; Bevilacqua, L.; Toriello, A.; Iovino, A.; Piscosquito, G.; Calicchio, G.; Barone, P. Starting eculizumab as rescue therapy in refractory myasthenic crisis. Neurol. Sci. 2023, 44, 3707–3709. [Google Scholar] [CrossRef]
- Song, J.; Huan, X.; Chen, Y.; Luo, Y.; Zhong, H.; Wang, Y.; Yang, L.; Xi, C.; Yang, Y.; Xi, J.; et al. The safety and efficacy profile of eculizumab in myasthenic crisis: A prospective small case series. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241261602. [Google Scholar] [CrossRef]
- Messina, C.; Basile, L.; Crescimanno, G.; Battaglia, S.; Scichilone, N.; Brighina, F.; Di Stefano, V. Prominent and fast response to eculizumab in myasthenic crisis: The potential as rescue therapy in refractory myasthenia gravis. Neurol. Sci. 2025, 46, 3299–3302. [Google Scholar] [CrossRef]
- Durmus, H.; Çakar, A.; Gülşen Parman, Y. Eculizumab as a rescue therapy in prolonged myasthenic crisis in the intensive care unit: A case series. Neurocritical Care 2025, 42, 1099–1101. [Google Scholar] [CrossRef]
- Erra, C.; Ricciardi, D.; Vinciguerra, C.; Fasolino, A.; Andreone, V.; Habetswallner, F.; Tuccillo, F. Eculizumab as treatment in refractory impeding and myasthenic crisis: A case series. Neurocritical Care 2025, 43, 685–690. [Google Scholar] [CrossRef]
- Rossini, E.; Morino, S.; Garibaldi, M.; Leonardi, L.; Tufano, L.; Lauletta, A.; Forcina, F.; Antonini, G.; Fionda, L. Emergent role of complement inhibitors in myasthenic crisis: Understanding why, when and how. Clin. Neurol. Neurosurg. 2025, 109011. [Google Scholar] [CrossRef]
- Uchi, T.; Konno, S.; Kihara, H.; Sugimoto, H. Successful Control of Myasthenic Crisis After the Introduction of Ravulizumab in Myasthenia Gravis: A Case Report. Cureus 2024, 16, e74117. [Google Scholar] [CrossRef]
Author | No. | Age (y) | M/F | Dur (m) | Subtype | Ab | Th-x y/n | MCr Tx | MG-ADL [QMG] | Post-MTT Params | MTT Eff. | PreMed Before MTT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCr Tx | MTT | IgG | Ab | Imp /Wors | Vax/ ABX | ||||||||||||
Pre | Post | Pre | Post | ||||||||||||||
EFG | Kawama, 2023 [54] | 1/2 | 52 | M | 168 | TAMG | AchR | y | IVIG IVMP PLEX | NA | NA | [2] | [10] | ↓ | ↑ | Wors | NA/ NA |
2/2 | 53 | F | 120 | TAMG | AchR | y | IVIG | NA | NA | [4] | [11] | ↓ | ↑ | Wors | NA/ NA | ||
Watanabe, 2024 [55] | 1/1 | 54 | F | 5 | TAMG | AchR | y | IVIG IVMP PLEX | 17 | 20 | 20 | 21 (1 cy) 1 (3 cy) | ↓ | ↓ | Imp | NA/ NA | |
Zhang, 2024 [56] | 1/1 | 35 | F | 3 | TAMG | AchR | y | IVIG IVMP | 18 [26] | 20 [27] | 19 [27] | 3 [13] (1 cy) | ↓ | ↓ | Imp | NA/ NA | |
Omar, 2024 [57] | 1/1 | 57 | M | NA | NA | AchR | NA | PLEX | 21 [29] | 20 [26] | 20 [26] | 3 [11] (1 cy) | NA | NA | Imp | NA/ NA | |
Hong, 2024 [58] | 1/1 | 58 | F | 96 | LOMG | AchR | n | IVIG IVMP | NA | 17 [24] | 17 [24] | 5 [9] (3rd time in 1 cy) | ↓ | ↓ | Imp | NA/ NA | |
1/2 | 60 | F | 108 | TAMG | AchR | y | IVIG | NA | 14 [23] | 14 [23] | 7 [14] (2nd time in 1 cy) | ↓ | ↓ | Imp | NA /NA | ||
1/3 | 66 | F | 84 | TAMG | AchR | y | — | NA | 14 [21] | 14 [21] | 6 [6] (1 cy) | ↓ | ↓ | Imp | NA /NA | ||
Song, 2024 [59] | 10 | 55.5 | M4 F6 | 3.9 ± 8.1 (y) | TAMG6 gMG3 Musk1 | AchR9 Musk1 | y6 n4 | NA | NA | NA | 15.6 ± 4.4 | 3.4 ± 2.2 (1 cy) | ↓ | ↓ | Imp | NA/ NA | |
Morita, 2024 [60] | 1/1 | 38 | M | NA | TAMG | AchR | y | IVIG IVMP PLEX | 10 | 14 | 14 | 2 (1 cy) 0 (7 cy) | ↓ | ↓ | Imp | NA/ NA | |
Ohara, 2024 [61] | 1/1 | 70 | F | 1 | LOMG | AchR | n | — | NA | NA | 11 | 2 (1 cy) 1 (4 cy) | ↓ | ↓ | Imp | NA/ NA | |
Sorrenti, 2024 [62] | 1/1 | 56 | F | 336 | SNMG | — | n | IVIG PLEX | NA | 11 | 11 | 3 (1 cy) 0 (5 cy) | ↓ | ↓ | Imp | NA/ NA | |
Shi, 2024 [63] | 1/1 | 63 | F | 24 | Musk-MG | Musk | NA | IVIG PLEX RTX | NA | NA | 5 | 0 (1 cy) | ↓ | NA | Imp | NA/ NA | |
1/2 | 42 | F | 24 | Musk-MG | Musk | NA | PLEXRTX | NA | NA | 13 | 4 (1 cy) | ↓ | NA | Imp | NA/ NA | ||
1/3 | 51 | F | 3 | Musk-MG | Musk | NA | IVIG IVMP RTX | NA | NA | 18 | 7 (1 cy) | ↓ | NA | Imp | NA/ NA | ||
1/4 | 43 | F | 24 | Musk-MG | Musk | NA | — | NA | NA | 14 | 3 (1 cy) | ↓ | NA | Imp | NA/ NA | ||
Shelly, 2025 [64] | 1/1 | 86 | F | 4 | LOMG | AchR | NA | PLEX | 23 | 21 | 19 | 12 (1 cy) 3 (4 cy) | NA | NA | Imp | NA/ NA | |
EFG-SC | Kweidor, 2024 [65] | 1/1 | 54 | F | 180 | TAMG | AchR | y | — | NA | NA | 10 [18] | 3 [3] (1 cy) | ↓ | ↓ | Imp | NA/ NA |
Author | No. | Age (y) | M/F | Dur (m) | Subtype | Ab | Th-x y/n | MCr Tx | MG-ADL [QMG] | Post-MTT Params | MTT Eff. | PreMed Before MTT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCr Tx | MTT | CH- 50 | Ab | Imp/Wors | Vax/ABX | ||||||||||||
Pre | Post | Pre | Post | ||||||||||||||
ECU | Hofstadt, 2021 [67] | 1/1 | 62 | M | 9 | LOMG | AchR | NA | IVIG PLEX RTX | NA | NA | 7 | 2 (2 wk) 0 (11 wk) | NA | NA | Imp | NA/y CTRX |
Usman, 2021 [68] | 1/3 | 24 | F | 132 | EOMG | AchR | y | IVIG RTX | NA | 13 | 12 | 4 (4 wk) 0 (5 wk) | NA | NA | Imp | Men/y | |
2/3 | 77 | M | 1 | LOMG | AchR | n | IVIG PLEX | NA | NA | 20 | 3 (5 wk) 0 (24 wk) | NA | NA | Imp | Men/y | ||
3/3 | 56 | M | 12 | LOMG | AchR | n | IVIG PLEX | NA | NA | 24 | 20 (3 wk) 14 (40 wk) | NA | NA | Imp | Men/y | ||
Strano, 2022 [69] | 1/1 | 48 | M | 7 | TAMG | AchR | y | IVIG PLEX | NA | NA | 23 | 17 (4 wk) | NA | NA | Imp | Men/ CTRX | |
Vinciguerra, 2023 [70] | 1/1 | 74 | M | 24 | LOMG | AchR | n | IVIG | NA | NA | NA | NA | NA | NA | Imp | n/RFP | |
Song, 2024 [71] | 1/1 | 71 | M | 2 | LOMG | AchR | n | IVIG PLEX | NA | 15 [15] | 15 [15] | 0 [5] (4 wk) 0 [3] (12 wk) | ↓ | no sig diff. vs. pbo | Imp | n/ SBT/CPZ | |
1/2 | 34 | F | 120 | EOMG | AchR | y | PLEX | NA | 19 [26] | 19 [26] | 3 [6] (4 wk) 0 [3] (12 wk) | ↓ | Imp | n/n | |||
1/3 | 37 | M | 4 | TAMG | AchR | y | IVIG PLEX | NA | 18 [24] | 18 [24] | 10 [22] (4 wk) 1 [9] (12 wk) | ↓ | Imp | n/CTRX | |||
1/4 | 64 | F | 5 | TAMG | AchR | y | IVIG IVMP | NA | 21 [24] | 21 [24] | 17 [22] (4 wk) 8 [15] (12 wk) | ↓ | Imp | n/MEPM | |||
Messina, 2025 [72] | 1/1 | 72 | M | 0 | LOMG | AchR | n | IVIG PLEX | 16 | 20 | 20 | 16 (1 d) 5 (2 wk) | NA | NA | Imp | Men/y | |
Durmus, 2025 [73] | 1/1 | 73 | F | 0 | LOMG | AchR | n | IVIG | 24 | 22 | 21 | 6 (4 wk) | NA | NA | Imp | Men/ MEPM | |
1/2 | 61 | F | 72 | TAMG | AchR | y | IVIG | 24 | 24 | 13 | 0 (4 wk) | NA | NA | Imp | Men/PCN | ||
1/3 | 37 | F | 2 | TAMG | AchR | y | IVIG | 24 | 24 | 17 | 1 (4 wk) | NA | NA | Imp | Men/PCN | ||
Erra, 2025 [74] | 1/1 | 32 | F | 108 | TAMG | AchR | y | IVIG | 24 [23] | 24 [23] | 24 [23] | 4 [8] (4 wk) | NA | NA | Imp | Men/RFP | |
1/2 | 72 | M | 144 | TAMG | AchR | y | IVIG PLEX | 24 [33] | 24 [33] | 24 [33] | 24 [33] (4 wk) | NA | NA | Wors | Men/RFP | ||
1/3 | 74 | M | 24 | LOMG | AchR | n | IVIG | 24 [39] | 24 [39] | 24 [39] | 4 [8] (4 wk) | NA | NA | Imp | Men/RFP | ||
1/4 | 78 | M | 288 | LOMG | AchR | n | IVIG | 24 [22] | 24 [22] | 24 [22] | 1 [13] (4 wk) | NA | NA | Imp | Men/RFP | ||
Takenobu, 2025 [39] | 1/1 | 38 | F | 3 | EOMG | AchR | y | IVIG IVMP | 24 | 24 | 24 | 18 (2 d) 4 (4 wk) | NA | ↓ | Imp | Men/NA | |
Rossini, 2025 [75] | 1/1 | 32 | F | 132 | TAMG | AchR | y | PLEX | 6 [12] | 23 [29] | 23 [29] | 20 [24] (1 wk) 2 [12] (3 wk) | NA | NA | Imp | Men/ CTRX | |
RAV | Konen, 2024 [40] | 1/1 | 34 | F | 8 | EOMG | AchR | n | IVIG PLEX | 11 [18] | [25] | [23] | 4 (7 wk) 2 (15 wk) [6] (2 wk) | NA | NA | Imp | n/AMPC |
Uchi, 2024 [76] | 1/1 | 71 | F | 24 | LOMG | AchR | n | IVMP | [14] | NA | NA | [9] (3 wk) | ↓ | ↓ | Imp | Men/n | |
ZIL | Ito, 2025 [41] | 1/1 | 83 | F | 17 | LOMG | AchR | n | IVIG IVMP | 13 | 23 | 23 | 18 (10 d) 9 (23 d) | ↓ | NA | Imp | Men/ CTRX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, S.; Kinno, R. Management of Myasthenic Crisis and Emerging Roles of Molecularly Targeted Therapies: A Narrative Review. Neurol. Int. 2025, 17, 163. https://doi.org/10.3390/neurolint17100163
Takahashi S, Kinno R. Management of Myasthenic Crisis and Emerging Roles of Molecularly Targeted Therapies: A Narrative Review. Neurology International. 2025; 17(10):163. https://doi.org/10.3390/neurolint17100163
Chicago/Turabian StyleTakahashi, Seiya, and Ryuta Kinno. 2025. "Management of Myasthenic Crisis and Emerging Roles of Molecularly Targeted Therapies: A Narrative Review" Neurology International 17, no. 10: 163. https://doi.org/10.3390/neurolint17100163
APA StyleTakahashi, S., & Kinno, R. (2025). Management of Myasthenic Crisis and Emerging Roles of Molecularly Targeted Therapies: A Narrative Review. Neurology International, 17(10), 163. https://doi.org/10.3390/neurolint17100163