Genetics of Frontotemporal Dementia in the Serbian Population: Findings from a Hospital-Based Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Assessment
2.3. Genetic Analysis
2.4. Statistical Analysis
2.5. Reporting Guidelines
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
AD | Alzheimer’s disease |
ALS | Amyotrophic Lateral Sclerosis |
bvFTD | Behavioral Variant Frontotemporal Dementia |
CBS | Corticobasal Syndrome |
CI | Confidence Interval |
CLIA | Clinical Laboratory Improvement Amendments |
CNV | Copy number variants |
CSF | Cerebrospinal Fluid |
CT | Computed Tomography |
FAB | Frontal Assessment Battery |
FH | Family History |
FH+ | Positive Family History |
FH− | Negative Family History |
FTD | Frontotemporal Dementia |
FTD-ALS | Frontotemporal Dementia with Amyotrophic Lateral Sclerosis |
FTLD | Frontotemporal Lobar Degeneration |
GRN | Progranulin |
HGVS | Human Genome Variation Society |
MAPT | Microtubule-Associated Protein Tau |
MMSE | Mini-Mental State Examination |
MRI | Magnetic Resonance Imaging |
nfvPPA | Non-Fluent/Agrammatic Variant Primary Progressive Aphasia |
NGS | Next-Generation Sequencing |
PPA | Primary Progressive Aphasia |
PSP | Progressive Supranuclear Palsy |
SD | Standard Deviation |
SNV | Single Nucleotide Variant |
svPPA | Semantic Variant Primary Progressive Aphasia |
TMEM106B | Transmembrane Protein 106B |
VUS | Variant of Uncertain Significance |
References
- Ulugut, H.; Pijnenburg, Y.A. Frontotemporal Dementia: Past, Present, and Future. Alzheimer’s Dement. 2023, 19, 5253–5263. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Bonvicini, C.; Scassellati, C.; Carrara, M.; Maj, C.; Fostinelli, S.; Binetti, G.; Ghidoni, R.; Benussi, L. The Missing Heritability of Sporadic Frontotemporal Dementia: New Insights from Rare Variants in Neurodegenerative Candidate Genes. Int. J. Mol. Sci. 2019, 20, 3903. [Google Scholar] [CrossRef] [PubMed]
- Van Mossevelde, S.; Engelborghs, S.; van der Zee, J.; Van Broeckhoven, C. Genotype–Phenotype Links in Frontotemporal Lobar Degeneration. Nat. Rev. Neurol. 2018, 14, 363–378. [Google Scholar] [CrossRef]
- Costa, B.; Manzoni, C.; Bernal-Quiros, M.; Kia, D.A.; Aguilar, M.; Alvarez, I.; Alvarez, V.; Andreassen, O.; Anfossi, M.; Bagnoli, S. C9orf72, Age at Onset, and Ancestry Help Discriminate Behavioral from Language Variants in FTLD Cohorts. Neurology 2020, 95, e3288–e3302. [Google Scholar] [CrossRef]
- Greaves, C.V.; Rohrer, J.D. An Update on Genetic Frontotemporal Dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Stefanova, E.; Marjanović, A.; Dobričić, V.; Mandić-Stojmenović, G.; Stojković, T.; Branković, M.; Šarčević, M.; Novaković, I.; Kostić, V.S. Frequency of C9orf72, GRN, and MAPT Pathogenic Variants in Patients Recruited at the Belgrade Memory Center. Neurogenetics 2024, 25, 193–200. [Google Scholar] [CrossRef]
- Mehrabian, S.; Thonberg, H.; Raycheva, M.; Lilius, L.; Stoyanova, K.; Forsell, C.; Cavallin, L.; Nesheva, D.; Westman, E.; Toncheva, D. Phenotypic Variability and Neuropsychological Findings Associated with C9orf72 Repeat Expansions in a Bulgarian Dementia Cohort. PLoS ONE 2018, 13, e0208383. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; Van Swieten, J.C.; Seelaar, H.; Dopper, E.G.; Onyike, C.U. Sensitivity of Revised Diagnostic Criteria for the Behavioural Variant of Frontotemporal Dementia. Brain 2011, 134, 2456–2477. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F. Classification of Primary Progressive Aphasia and Its Variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Litvan, I.; Lang, A.E.; Bak, T.H.; Bhatia, K.P.; Borroni, B.; Boxer, A.L.; Dickson, D.W.; Grossman, M.; Hallett, M. Criteria for the Diagnosis of Corticobasal Degeneration. Neurology 2013, 80, 496–503. [Google Scholar] [CrossRef]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L. Clinical Diagnosis of Progressive Supranuclear Palsy: The Movement Disorder Society Criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef]
- Shefner, J.M.; Al-Chalabi, A.; Baker, M.R.; Cui, L.-Y.; de Carvalho, M.; Eisen, A.; Grosskreutz, J.; Hardiman, O.; Henderson, R.; Matamala, J.M. A Proposal for New Diagnostic Criteria for ALS. Clin. Neurophysiol. 2020, 131, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at Bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef]
- Goldman, J.; Farmer, J.; Wood, E.; Johnson, J.; Boxer, A.; Neuhaus, J.; Lomen-Hoerth, C.; Wilhelmsen, K.; Lee, V.-Y.; Grossman, M. Comparison of Family Histories in FTLD Subtypes and Related Tauopathies. Neurology 2005, 65, 1817–1819. [Google Scholar] [CrossRef] [PubMed]
- Cleary, E.M.; Pal, S.; Azam, T.; Moore, D.J.; Swingler, R.; Gorrie, G.; Stephenson, L.; Colville, S.; Chandran, S.; Porteous, M. Improved PCR Based Methods for Detecting C9orf72 Hexanucleotide Repeat Expansions. Mol. Cell. Probes 2016, 30, 218–224. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Majounie, E.; Renton, A.E.; Mok, K.; Dopper, E.G.; Waite, A.; Rollinson, S.; Chiò, A.; Restagno, G.; Nicolaou, N.; Simon-Sanchez, J. Frequency of the C9orf72 Hexanucleotide Repeat Expansion in Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: A Cross-Sectional Study. Lancet Neurol. 2012, 11, 323–330. [Google Scholar] [CrossRef]
- Öijerstedt, L.; Chiang, H.-H.; Björkström, J.; Forsell, C.; Lilius, L.; Lindström, A.-K.; Thonberg, H.; Graff, C. Confirmation of High Frequency of C9orf72 Mutations in Patients with Frontotemporal Dementia from Sweden. Neurobiol. Aging 2019, 84, 241.e21–241.e25. [Google Scholar] [CrossRef]
- Wagner, M.; Lorenz, G.; Volk, A.E.; Brunet, T.; Edbauer, D.; Berutti, R.; Zhao, C.; Anderl-Straub, S.; Bertram, L.; Danek, A. Clinico-Genetic Findings in 509 Frontotemporal Dementia Patients. Mol. Psychiatry 2021, 26, 5824–5832. [Google Scholar] [CrossRef]
- Van Langenhove, T.; Van Der Zee, J.; Gijselinck, I.; Engelborghs, S.; Vandenberghe, R.; Vandenbulcke, M.; De Bleecker, J.; Sieben, A.; Versijpt, J.; Ivanoiu, A. Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared with GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort. JAMA Neurol. 2013, 70, 365–373. [Google Scholar]
- Mahoney, C.J.; Beck, J.; Rohrer, J.D.; Lashley, T.; Mok, K.; Shakespeare, T.; Yeatman, T.; Warrington, E.K.; Schott, J.M.; Fox, N.C. Frontotemporal Dementia with the C9ORF72 Hexanucleotide Repeat Expansion: Clinical, Neuroanatomical and Neuropathological Features. Brain 2012, 135, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.; Tavian, D.; Baker, M.C.; Richardson, A.M.; Snowden, J.S.; Neary, D.; Mann, D.M.; Pickering-Brown, S.M. Recent Origin and Spread of a Common Welsh MAPT Splice Mutation Causing Frontotemporal Lobar Degeneration. Neurogenetics 2009, 10, 313–318. [Google Scholar] [CrossRef]
- Capozzo, R.; Sassi, C.; Hammer, M.B.; Arcuti, S.; Zecca, C.; Barulli, M.R.; Tortelli, R.; Gibbs, J.R.; Crews, C.; Seripa, D. Clinical and Genetic Analyses of Familial and Sporadic Frontotemporal Dementia Patients in Southern Italy. Alzheimer’s Dement. 2017, 13, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.M.; Koros, C.; Dokuru, D.R.; Van Berlo, V.; Kroupis, C.; Wojta, K.; Wang, Q.; Andronas, N.; Matsi, S.; Beratis, I.N. Frontotemporal Dementia Spectrum: First Genetic Screen in a Greek Cohort. Neurobiol. Aging 2019, 75, 224.e1–224.e8. [Google Scholar] [CrossRef]
- Guven, G.; Lohmann, E.; Bras, J.; Gibbs, J.R.; Gurvit, H.; Bilgic, B.; Hanagasi, H.; Rizzu, P.; Heutink, P.; Emre, M. Mutation Frequency of the Major Frontotemporal Dementia Genes, MAPT, GRN and C9ORF72 in a Turkish Cohort of Dementia Patients. PLoS ONE 2016, 11, e0162592. [Google Scholar] [CrossRef] [PubMed]
- Sposito, T.; Preza, E.; Mahoney, C.J.; Setó-Salvia, N.; Ryan, N.S.; Morris, H.R.; Arber, C.; Devine, M.J.; Houlden, H.; Warner, T.T. Developmental Regulation of Tau Splicing Is Disrupted in Stem Cell-Derived Neurons from Frontotemporal Dementia Patients with the 10+ 16 Splice-Site Mutation in MAPT. Hum. Mol. Genet. 2015, 24, 5260–5269. [Google Scholar] [CrossRef]
- Hutton, M.; Lendon, C.L.; Rizzu, P.; Baker, M.; Froelich, S.; Houlden, H.; Pickering-Brown, S.; Chakraverty, S.; Isaacs, A.; Grover, A. Association of Missense and 5′-Splice-Site Mutations in Tau with the Inherited Dementia FTDP-17. Nature 1998, 393, 702–705. [Google Scholar] [CrossRef]
- Spillantini, M.G.; Murrell, J.R.; Goedert, M.; Farlow, M.R.; Klug, A.; Ghetti, B. Mutation in the Tau Gene in Familial Multiple System Tauopathy with Presenile Dementia. Proc. Natl. Acad. Sci. USA 1998, 95, 7737–7741. [Google Scholar] [CrossRef] [PubMed]
- Pickering-Brown, S.; Richardson, A.; Snowden, J.; McDonagh, A.; Burns, A.; Braude, W.; Baker, M.; Liu, W.; Yen, S.; Hardy, J. Inherited Frontotemporal Dementia in Nine British Families Associated with Intronic Mutations in the Tau Gene. Brain 2002, 125, 732–751. [Google Scholar] [CrossRef] [PubMed]
- Ghetti, B.; Oblak, A.L.; Boeve, B.F.; Johnson, K.A.; Dickerson, B.C.; Goedert, M. Invited Review: Frontotemporal Dementia Caused by Microtubule-Associated Protein Tau Gene (MAPT) Mutations: A Chameleon for Neuropathology and Neuroimaging. Neuropathol. Appl. Neurobiol. 2015, 41, 24–46. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Number of patients | 58 |
Sex (F/M) | 31 (53.45%)/27 (46.55%) |
Age (years) | 67.88 ± 9.09 (range 46–88) |
Age at onset (years) | 61.70 ± 8.71 (range 42–75) |
Disease duration (years) | 6.17 ± 3.31 (range 2–16) |
Years of education | 12.47 ± 2.98 (range 4–21) |
MMSE | 21.05 ± 6.95 (range 3–30) |
FAB | 8.58 ± 3.90 (range 2–17) |
Clinical phenotypes | bvFTD: 44 (75.87%) nfvPPA: 10 (17.25%) svPPA: 1 (1.72%) CBS: 1 (1.72%) PSP: 1 (1.72%) FTD-ALS: 1 (1.72%) |
Positive family history | 16 (27.59%) |
Positive/Total Cases | % Positive | Exact 95% CI (Clopper–Pearson) | |
---|---|---|---|
MAPT | 2/58 | 3.45% | 0.42–11.91% |
GRN | 0/58 | 0.00% | 0.00–6.16% |
C9orf72 | 1/58 | 1.72% | 0.04–9.24% |
TMEM106B | 0/58 | 0.00% | 0.00–6.16% |
Diagnostic yield (total) | 3/58 | 5.17% | 1.08–14.38% |
Diagnostic yield (FH+) | 3/16 | 18.75% | 4.05–45.65% |
Characteristic | Patient 1 | Patient 2 | Patient 3 |
---|---|---|---|
Gene/Variant | MAPT c.1920+16C>T | MAPT c.1920+16C>T | C9orf72 pathogenic expansion |
Phenotype | bvFTD | bvFTD | bvFTD |
Family history | Yes | Yes | Yes |
Age at onset (y) | 57 | 55 | 65 |
Disease duration (y) | 7 | 13 | 5 |
Age (y) | 64 | 68 | 70 |
MMSE | 16 | 24 | 27 |
FAB | 10 | 12 | - |
Education (y) | 16 | 11 | 20 |
Sex | F | M | M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milošević, V.; Bašić, J.; Semnic, M.; Antić, E.; Malobabić, M.; Stoiljković, M. Genetics of Frontotemporal Dementia in the Serbian Population: Findings from a Hospital-Based Cohort. Neurol. Int. 2025, 17, 162. https://doi.org/10.3390/neurolint17100162
Milošević V, Bašić J, Semnic M, Antić E, Malobabić M, Stoiljković M. Genetics of Frontotemporal Dementia in the Serbian Population: Findings from a Hospital-Based Cohort. Neurology International. 2025; 17(10):162. https://doi.org/10.3390/neurolint17100162
Chicago/Turabian StyleMilošević, Vuk, Jelena Bašić, Marija Semnic, Eva Antić, Marina Malobabić, and Milan Stoiljković. 2025. "Genetics of Frontotemporal Dementia in the Serbian Population: Findings from a Hospital-Based Cohort" Neurology International 17, no. 10: 162. https://doi.org/10.3390/neurolint17100162
APA StyleMilošević, V., Bašić, J., Semnic, M., Antić, E., Malobabić, M., & Stoiljković, M. (2025). Genetics of Frontotemporal Dementia in the Serbian Population: Findings from a Hospital-Based Cohort. Neurology International, 17(10), 162. https://doi.org/10.3390/neurolint17100162