Aging Processes of Working Memory in Different Modalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Measures
2.2.1. Demographics and Clinical Questionnaire
2.2.2. Digit Span
2.2.3. Tactual Span
2.2.4. Visuospatial Span
2.2.5. The Montreal Cognitive Assessment Task (MoCA)
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Baddeley, A.D. Developing the concept of working memory: The role of neuropsychology. Arch. Clin. Neuropsychol. 2021, 36, 861–873. [Google Scholar]
- Courtney, S.M. Working memory is a distributed dynamic process. Cogn. Neurosci. 2022, 13, 208–209. [Google Scholar] [CrossRef] [PubMed]
- Van Ede, F.; Nobre, A.C. Turning attention inside out: How working memory serves behavior. Annu. Rev. Psychol. 2023, 74, 137–165. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Understanding executive functions: What helps or hinders them and how executive functions and language development mutually support one another. Perspect. Lang. Lit. 2014, 40, 7–11. [Google Scholar]
- Vernucci, S.; Aydmune, Y.; Andrés, M.L.; Burin, D.I.; Canet-Juric, L. Working memory and fluid intelligence predict reading comprehension in school-age children: A one-year longitudinal study. Appl. Cogn. Psychol. 2021, 35, 1115–1124. [Google Scholar] [CrossRef]
- Belacchi, C.; Artuso, C.; Palladino, P. Semantic long-term memory and verbal working memory performance: How does their relationship change with age? Cogn. Dev. 2022, 62, 101185. [Google Scholar] [CrossRef]
- Forsberg, A.; Blume, C.L.; Cowan, N. The development of metacognitive accuracy in working memory across childhood. Dev. Psychol. 2021, 57, 1297. [Google Scholar] [CrossRef] [PubMed]
- Krogsrud, S.K.; Mowinckel, A.M.; Sederevicius, D.; Vidal-Piñeiro, D.; Amlien, I.K.; Wang, Y.; Sørensen, Ø.; Walhovd, K.B.; Fjell, A.M. Relationships between apparent cortical thickness and working memory across the lifespan-effects of genetics and socioeconomic status. Dev. Cogn. Neurosci. 2021, 51, 100997. [Google Scholar] [CrossRef]
- Lugtmeijer, S.; de Haan, E.H.; Kessels, R.P. A comparison of visual working memory and episodic memory performance in younger and older adults. Aging Neuropsychol. Cogn. 2019, 26, 387–406. [Google Scholar] [CrossRef] [PubMed]
- Swanson, H.L. Verbal and visual-spatial working memory: What develops over a life span? Dev. Psychol. 2017, 53, 971. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. Working memory across the lifespan: A cross-sectional approach. J. Cogn. Psychol. 2013, 25, 84–93. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; De Beni, R. Working memory and inhibition across the adult life-span. Acta Psychol. 2008, 128, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Cansino, S.; Hernández-Ramos, E.; Estrada-Manilla, C.; Torres-Trejo, F.; Martínez-Galindo, J.G.; Ayala-Hernández, M.; Gómez-Fernández, T.; Osorio, D.; Cedillo-Tinoco, M.; Garcés-Flores, L. The decline of verbal and visuospatial working memory across the adult life span. Age 2013, 35, 2283–2302. [Google Scholar] [CrossRef] [PubMed]
- D’Antuono, G.; Maini, M.; Marin, D.; Boccia, M.; Piccardi, L. Effect of ageing on verbal and visuo-spatial working memory: Evidence from 880 individuals. Appl. Neuropsychol. Adult 2022, 29, 193–202. [Google Scholar] [CrossRef]
- Vecchi, T.; Richardson, J.; Cavallini, E. Passive storage versus active processing in working memory: Evidence from age-related variations in performance. Eur. J. Cogn. Psychol. 2005, 17, 521–539. [Google Scholar] [CrossRef]
- Bisiacchi, P.S.; Borella, E.; Bergamaschi, S.; Carretti, B.; Mondini, S. Interplay between memory and executive functions in normal and pathological aging. J. Clin. Exp. Neuropsychol. 2008, 30, 723–733. [Google Scholar] [CrossRef]
- Kumar, N.; Priyadarshi, B. Differential effect of aging on verbal and visuo-spatial working memory. Aging Dis. 2013, 4, 170. [Google Scholar]
- Park, D.C.; Lautenschlager, G.; Hedden, T.; Davidson, N.S.; Smith, A.D.; Smith, P.K. Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 2002, 17, 299. [Google Scholar] [CrossRef]
- Fournet, N.; Roulin, J.-L.; Vallet, F.; Beaudoin, M.; Agrigoroaei, S.; Paignon, A.; Dantzer, C.; Desrichard, O. Evaluating short-term and working memory in older adults: French normative data. Aging Ment. Health 2012, 16, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, G.; Shelly, C. Does the right hemisphere age more rapidly than the left? J. Clin. Exp. Neuropsychol. 1981, 3, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Jockwitz, C.; Caspers, S.; Lux, S.; Jütten, K.; Schleicher, A.; Eickhoff, S.B.; Amunts, K.; Zilles, K. Age-and function-related regional changes in cortical folding of the default mode network in older adults. Brain Struct. Funct. 2017, 222, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Payer, D.; Marshuetz, C.; Sutton, B.; Hebrank, A.; Welsh, R.C.; Park, D.C. Decreased neural specialization in old adults on a working memory task. Neuroreport 2006, 17, 487–491. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A. Cognitive neuropsychology of the aging brain. In Cognitive Aging; Psychology Press: London, UK, 2012; pp. 93–114. [Google Scholar]
- Kirova, A.M.; Bays, R.B.; Lagalwar, S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed Res. Int. 2015, 2015, 748212. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Kolev, V.; Yordanova, J. Is there a specific Vivaldi effect on verbal memory functions? Evidence from listening to music in younger and older adults. Psychol. Music 2019, 47, 325–341. [Google Scholar] [CrossRef]
- Giannouli, V.; Yordanova, J.; Kolev, V. Can Brief Listening to Mozart’s Music Improve Visual Working Memory? An Update on the Role of Cognitive and Emotional Factors. J. Intell. 2024, 12, 54. [Google Scholar] [CrossRef]
- Mellet, E.; Tzourio, N.; Crivello, F.; Joliot, M.; Denis, M.; Mazoyer, B. Functional anatomy of spatial mental imagery generated from verbal instructions. J. Neurosci. 1996, 16, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, A.; Stine, E.A.; Lahar, C.J.; Aberdeen, J.S. Does the capacity of working memory change with age? Exp. Aging Res. 1988, 14, 103–107. [Google Scholar] [CrossRef]
- Danovitch, J.H. Growing up with Google: How children’s understanding and use of internet-based devices relates to cognitive development. Hum. Behav. Emerg. Technol. 2019, 1, 81–90. [Google Scholar] [CrossRef]
- Fougnie, D.; Zughni, S.; Godwin, D.; Marois, R. Working memory storage is intrinsically domain specific. J. Exp. Psychol. Gen. 2015, 144, 30. [Google Scholar] [CrossRef]
- Gallace, A.; Spence, C. In Touch with the Future: The Sense of Touch from Cognitive Neuroscience to Virtual Reality; OUP Oxford: Oxford, UK, 2014. [Google Scholar]
- Heled, E.; Rotberg, S.; Yavich, R.; Hoofien, A.D. Introducing the tactual span: A new task for assessing working memory in the teactile modality. Assessment 2021, 28, 1018–1031. [Google Scholar] [CrossRef] [PubMed]
- Heled, E.; Israeli, R.; Margalit, D. Working memory development in different modalities in children and young adults. J. Exp. Child Psychol. 2022, 220, 105422. [Google Scholar] [CrossRef]
- Heled, E.; Levi, O. Aging’s Effect on Working Memory—Modality Comparison. Biomedicines 2024, 12, 835. [Google Scholar] [CrossRef]
- van Dam, W.O.; Decker, S.L.; Durbin, J.S.; Vendemia, J.M.; Desai, R.H. Resting state signatures of domain and demand-specific working memory performance. Neuroimage 2015, 118, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Vergauwe, E.; Camos, V.; Barrouillet, P. The impact of storage on processing: How is information maintained in working memory? J. Exp. Psychol. Learn. Mem. Cogn. 2014, 40, 1072. [Google Scholar] [CrossRef]
- Saults, J.S.; Cowan, N. A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory. J. Exp. Psychol. Gen. 2007, 136, 663. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, J. From Active Touch to Tactile Communication: What’s Tactile Cognition Got to do with It? Danish Resource Centre on Congenital Deaf Blindness: Aalborg, Denmark, 2010. [Google Scholar]
- Gignac, G.E.; Kovacs, K.; Reynolds, M.R. Backward and forward serial recall across modalities: An individual differences perspective. Personal. Individ. Differ. 2018, 121, 147–151. [Google Scholar] [CrossRef]
- Heled, E. Forward versus backward recall: Modality testing. Appl. Neuropsychol. Adult 2024, 1–7. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Memory Scale, 3rd ed.; WMS-III; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Corsi, P.M. Human Memory and the Medial Temporal Region of the Brain. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1972. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Yang, T.; Su, X.; Allen, R.J.; Ye, Z.; Jia, L. Improving older adults’ ability to follow instructions: Benefits of actions at encoding and retrieval in working memory. Memory 2022, 30, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, M.; Dwolatzky, T.; Press, Y. Validation of the Hebrew version of the MoCA test as a screening instrument for the early detection of mild cognitive impairment in elderly individuals. J. Geriatr. Psychiatry Neurol. 2012, 25, 155–161. [Google Scholar] [CrossRef]
- Aiello, E.N.; Pasotti, F.; Appollonio, I.; Bolognini, N. Trajectories of MMSE and MoCA scores across the healthy adult lifespan in the Italian population. Aging Clin. Exp. Res. 2022, 34, 2417–2420. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Heled, E.; Ohayon, M.; Oshri, O. Working memory in intact modalities among individuals with sensory deprivation. Heliyon 2022, 8, e09558. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, Z.; Vecchi, T. Supramodality effects in visual and haptic spatial processes. J. Exp. Psychol. Learn. Mem. Cogn. 2008, 34, 631. [Google Scholar] [CrossRef]
- Katus, T.; Eimer, M. Independent attention mechanisms control the activation of tactile and visual working memory representations. J. Cogn. Neurosci. 2018, 30, 644–655. [Google Scholar] [CrossRef]
- Bliss, I.; Hämäläinen, H. Different working memory capacity in normal young adults for visual and tactile letter recognition task. Scand. J. Psychol. 2005, 46, 247–251. [Google Scholar] [CrossRef]
- Heled, E.; Ohayon, M. Visuospatial and tactile working memory in individuals with congenital deafness. J. Deaf Stud. Deaf Educ. 2021, 26, 314–321. [Google Scholar] [CrossRef]
- Heled, E.; Oshri, O. Validation of the Tactual Span in individuals with congenital and acquired blindness. Br. J. Vis. Impair. 2023, 41, 328–342. [Google Scholar] [CrossRef]
- Tamè, L.; Wühle, A.; Petri, C.D.; Pavani, F.; Braun, C. Concurrent use of somatotopic and external reference frames in a tactile mislocalization task. Brain Cogn. 2017, 111, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Fandakova, Y.; Sander, M.C.; Werkle-Bergner, M.; Shing, Y.L. Age differences in short-term memory binding are related to working memory performance across the lifespan. Psychol. Aging 2014, 29, 140. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.M.; Raz, N. Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 2009, 47, 916–927. [Google Scholar] [CrossRef]
- Montembeault, M.; Joubert, S.; Doyon, J.; Carrier, J.; Gagnon, J.-F.; Monchi, O.; Lungu, O.; Belleville, S.; Brambati, S.M. The impact of aging on gray matter structural covariance networks. Neuroimage 2012, 63, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Costello, M.C.; Buss, A.T. Age-related decline of visual working memory: Behavioral results simulated with a dynamic neural field model. J. Cogn. Neurosci. 2018, 30, 1532–1548. [Google Scholar] [CrossRef] [PubMed]
- Mahrer, P.; Miles, C. Recognition memory for tactile sequences. Memory 2002, 10, 7–20. [Google Scholar] [CrossRef]
- Heled, E. Laterality in tactile working memory: The one-hand version of the Tactual Span. J. Neuropsychol. 2024. ahead of print. [Google Scholar] [CrossRef]
- Norris, D.; Hall, J.; Gathercole, S.E. How do we perform backward serial recall? Mem. Cogn. 2019, 47, 519–543. [Google Scholar] [CrossRef] [PubMed]
20–29 | 60–69 | 70–79 | 80–89 | |
---|---|---|---|---|
Age | 24.6 (2.88) | 64.2 (2.77) | 75.23 (2.12) | 83.82 (2.86) |
Years of education | 13.93 (1.28) | 13.83 (1.98) | 14.71 (2.03) | 13.51 (1.87) |
20–29 | 60–69 | 70–79 | 80–89 | |
---|---|---|---|---|
Digit Span fw | 6.13 (0.93) | 5.87 (1.01) | 5.26 (0.85) | 5.05 (0.85) |
Digit Span bw | 4.87 (1.20) | 4.93 (0.87) | 4.42 (0.95) | 3.90 (0.91) |
Tactual Span fw | 5.30 (1.26) | 4.57 (0.81) | 3.94 (1.43) | 3.49 (1.07) |
Tactual Span bw | 4.93 (1.01) | 3.87 (1.01) | 3.84 (1.24) | 2.90 (0.85) |
Visuospatial Span fw | 5.97 (0.81) | 5.27 (0.24) | 4.45 (1.09) | 3.92 (0.84) |
Visuospatial Span bw | 5.17 (1.08) | 4.43 (0.77) | 3.90 (0.70) | 3.33 (0.98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levi, O.; Heled, E. Aging Processes of Working Memory in Different Modalities. Neurol. Int. 2024, 16, 1122-1131. https://doi.org/10.3390/neurolint16050084
Levi O, Heled E. Aging Processes of Working Memory in Different Modalities. Neurology International. 2024; 16(5):1122-1131. https://doi.org/10.3390/neurolint16050084
Chicago/Turabian StyleLevi, Ohad, and Eyal Heled. 2024. "Aging Processes of Working Memory in Different Modalities" Neurology International 16, no. 5: 1122-1131. https://doi.org/10.3390/neurolint16050084
APA StyleLevi, O., & Heled, E. (2024). Aging Processes of Working Memory in Different Modalities. Neurology International, 16(5), 1122-1131. https://doi.org/10.3390/neurolint16050084