The Effects of Transcranial Direct Current Stimulation in Patients with Mild Cognitive Impairment
Abstract
:1. Introduction
1.1. Mild Cognitive Impairment
1.2. Transcranial Direct Current Stimulation
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.2.1. Population
2.2.2. Intervention
2.2.3. Study Design
2.2.4. Outcome
2.3. Selection Process
3. Results
3.1. Transcranial Direct Current Stimulation on Cognition
3.2. Transcranial Direct Current Stimulation Combined with Cognitive Training
3.3. Transcranial Direct Current Stimulation Combined with Dual-Task Gait Training
3.4. Effects on Neuropsychiatric Symptoms
3.5. Effects on Visuospatial Memory
3.6. Effects over the Theory of Mind
3.7. Effects on Spatial Navigation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Kokmen, E.; Tangelos, E.G. Aging, Memory, and Mild Cognitive Impairment. Int. Psychogeriatr. 1997, 9, 65–69. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Petersen, R.C. Mild Cognitive Impairment. CONTINUUM 2016, 22, 404–418. [Google Scholar] [CrossRef]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef] [PubMed]
- United Nations DESA, P.D. World Population Prospects 2022: Summary of Results, Ten Key Messages. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_wpp_key-messages.pdf (accessed on 5 May 2023).
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.-T. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age Ageing 2022, 51, afac173. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.L.; Unverzagt, F.; LaMantia, M.A.; Khan, B.A.; Boustani, M.A. Risk factors for the progression of mild cognitive impairment to dementia. Clin. Geriatr. Med. 2013, 29, 873–893. [Google Scholar] [CrossRef] [PubMed]
- Tangalos, E.G.; Petersen, R.C. Mild Cognitive Impairment in Geriatrics. Clin. Geriatr. Med. 2018, 34, 563–589. [Google Scholar] [CrossRef]
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimer’s Dis. Other Dement.® 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Connors, M.H.; Seeher, K.; Teixeira-Pinto, A.; Woodward, M.; Ames, D.; Brodaty, H. Mild Cognitive Impairment and Caregiver Burden: A 3-Year-Longitudinal Study. Am. J. Geriatr. Psychiatry 2019, 27, 1206–1215. [Google Scholar] [CrossRef]
- Birba, A.; Ibáñez, A.; Sedeño, L.; Ferrari, J.; García, A.M.; Zimerman, M. Non-Invasive Brain Stimulation: A New Strategy in Mild Cognitive Impairment? Front. Aging Neurosci. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Philip, N.S.; Nelson, B.G.; Frohlich, F.; Lim, K.O.; Widge, A.S.; Carpenter, L.L. Low-Intensity Transcranial Current Stimulation in Psychiatry. Am. J. Psychiatry 2017, 174, 628–639. [Google Scholar] [CrossRef]
- Merzagora, A.C.; Foffani, G.; Panyavin, I.; Mordillo-Mateos, L.; Aguilar, J.; Onaral, B.; Oliviero, A. Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage 2010, 49, 2304–2310. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P. Safety of transcranial direct current stimulation: Evidence based update. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Bikson, M. Extending the parameter range for tDCS: Safety and tolerability of 4 mA stimulation. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2017, 10, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.; Borges, H.; Paneri, B.; Kaufman, T.; Nassis, E.; Zannou, A.L.; Shin, Y.; Choi, H.; Kim, S.; Lee, K. Adaptive current tDCS up to 4 mA. Brain Stimul. 2020, 13, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Esmaeilpour, Z.; Adair, D.; Kronberg, G.; Tyler, W.J.; Antal, A.; Datta, A.; Sabel, B.A.; Nitsche, M.A.; Loo, C.; et al. Transcranial electrical stimulation nomenclature. Brain Stimul. 2019, 12, 1349–1366. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, A.F.; Volz, M.S.; Bikson, M.; Fregni, F. Electrode positioning and montage in transcranial direct current stimulation. JoVE 2011, e2744. [Google Scholar] [CrossRef]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int. J. Neuropsychopharmacol. 2021, 24, 256–313. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef]
- Solomons, C.D.; Shanmugasundaram, V. Transcranial direct current stimulation: A review of electrode characteristics and materials. Med. Eng. Phys. 2020, 85, 63–74. [Google Scholar] [CrossRef]
- Ostrowski, J.; Svaldi, J.; Schroeder, P.A. More focal, less heterogeneous? Multi-level meta-analysis of cathodal high-definition transcranial direct current stimulation effects on language and cognition. J. Neural Transm. 2022, 129, 861–878. [Google Scholar] [CrossRef]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of Transcranial Direct Current Stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633. [Google Scholar] [CrossRef]
- Petersen, T.H.; Puthusserypady, S. Assessing tDCS placebo effects on EEG and cognitive tasks. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4509–4512. [Google Scholar]
- Bin Dawood, A.; Dickinson, A.; Aytemur, A.; Howarth, C.; Milne, E.; Jones, M. Investigating the effects of tDCS on visual orientation discrimination task performance:“the possible influence of placebo”. J. Cogn. Enhanc. 2020, 4, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Bachtiar, V.; Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 2011, 21, 480–484. [Google Scholar] [CrossRef]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Sumiyoshi, T. Neurobiological Mechanisms of Transcranial Direct Current Stimulation for Psychiatric Disorders; Neurophysiological, Chemical, and Anatomical Considerations. Front. Hum. Neurosci. 2021, 15, 631838. [Google Scholar] [CrossRef]
- Pini, L.; Manenti, R.; Cotelli, M.; Pizzini, F.B.; Frisoni, G.B.; Pievani, M. Non-Invasive Brain Stimulation in Dementia: A Complex Network Story. Neurodegener. Dis. 2019, 18, 281–301. [Google Scholar] [CrossRef]
- Verveer, I.; Remmerswaal, D.; van Der Veen, F.M.; Franken, I.H. Long-term tDCS effects on neurophysiological measures of cognitive control in tobacco smokers. Biol. Psychol. 2020, 156, 107962. [Google Scholar] [CrossRef]
- Gangemi, A.; Colombo, B.; Fabio, R.A. Effects of short-and long-term neurostimulation (tDCS) on Alzheimer’s disease patients: Two randomized studies. Aging Clin. Exp. Res. 2021, 33, 383–390. [Google Scholar] [CrossRef]
- Longo, V.; Barbati, S.A.; Re, A.; Paciello, F.; Bolla, M.; Rinaudo, M.; Miraglia, F.; Alù, F.; Di Donna, M.G.; Vecchio, F. Transcranial direct current stimulation enhances neuroplasticity and accelerates motor recovery in a stroke mouse model. Stroke 2022, 53, 1746–1758. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Kashyap, R.; Goodwill, A.M.; O’Brien, B.A.; Rapp, B.; Oishi, K.; Desmond, J.E.; Chen, S.A. Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults. Brain Stimul. 2022, 15, 125–140. [Google Scholar] [CrossRef]
- Weller, S.; Derntl, B.; Plewnia, C. Sex matters for the enhancement of cognitive training with transcranial direct current stimulation (tDCS). Biol. Sex Differ. 2023, 14, 78. [Google Scholar] [CrossRef]
- León, J.J.; Sánchez-Kuhn, A.; Fernández-Martín, P.; Páez-Pérez, M.A.; Thomas, C.; Datta, A.; Sánchez-Santed, F.; Flores, P. Transcranial direct current stimulation improves risky decision making in women but not in men: A sham-controlled study. Behav. Brain Res. 2020, 382, 112485. [Google Scholar] [CrossRef]
- Buch, E.R.; Santarnecchi, E.; Antal, A.; Born, J.; Celnik, P.A.; Classen, J.; Gerloff, C.; Hallett, M.; Hummel, F.C.; Nitsche, M.A.; et al. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin. Neurophysiol. 2017, 128, 589–603. [Google Scholar] [CrossRef]
- Esmaeilpour, Z.; Marangolo, P.; Hampstead, B.M.; Bestmann, S.; Galletta, E.; Knotkova, H.; Bikson, M. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul. 2018, 11, 310–321. [Google Scholar] [CrossRef]
- Heeger, D.J.; Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 2002, 3, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Riera, J.; Iwata, K.; Takahashi, M.; Wakabayashi, T.; Kawashima, R. The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. Neuroimage 2006, 32, 616–625. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Fileccia, E.; Di Stasi, V.; Poda, R.; Rizzo, G.; Stanzani-Maserati, M.; Oppi, F.; Avoni, P.; Capellari, S.; Liguori, R. Effects on cognition of 20-day anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex in patients affected by mild cognitive impairment: A case-control study. Neurol. Sci. 2019, 40, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Stonsaovapak, C.; Hemrungroj, S.; Terachinda, P.; Piravej, K. Effect of Anodal Transcranial Direct Current Stimulation at the Right Dorsolateral Prefrontal Cortex on the Cognitive Function in Patients With Mild Cognitive Impairment: A Randomized Double-Blind Controlled Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Sandrini, M.; Gobbi, E.; Binetti, G.; Cotelli, M. Effects of Transcranial Direct Current Stimulation on Episodic Memory in Amnestic Mild Cognitive Impairment: A Pilot Study. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2020, 75, 1403–1413. [Google Scholar] [CrossRef]
- Gu, J.; Li, D.; Li, Z.; Guo, Y.; Qian, F.; Wang, Y.; Tang, L. The Effect and Mechanism of Transcranial Direct Current Stimulation on Episodic Memory in Patients With Mild Cognitive Impairment. Front. Neurosci. 2022, 16, 811403. [Google Scholar] [CrossRef] [PubMed]
- Aksu, S.; Uslu, A.; İşçen, P.; Tülay, E.E.; Barham, H.; Soyata, A.Z.; Demirtas-Tatlidede, A.; Yıldız, G.B.; Bilgiç, B.; Hanağası, H.; et al. Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol. Sci. 2022, 43, 4029–4044. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.J.; Gasson, N.; Johnson, A.R.; Booth, L.; Loftus, A.M. Cognitive Training and Transcranial Direct Current Stimulation for Mild Cognitive Impairment in Parkinson’s Disease: A Randomized Controlled Trial. Park. Dis. 2018, 2018, 307. [Google Scholar] [CrossRef]
- Das, N.; Spence, J.S.; Aslan, S.; Vanneste, S.; Mudar, R.; Rackley, A.; Quiceno, M.; Chapman, S.B. Cognitive Training and Transcranial Direct Current Stimulation in Mild Cognitive Impairment: A Randomized Pilot Trial. Front. Neurosci. 2019, 13, 307. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.M.; Mohan, A.; Alonzo, A.; Gates, N.; Gbadeyan, O.; Meinzer, M.; Sachdev, P.; Brodaty, H.; Loo, C. A Pilot Double-Blind Randomized Controlled Trial of Cognitive Training Combined with Transcranial Direct Current Stimulation for Amnestic Mild Cognitive Impairment. J. Alzheimers Dis. 2019, 71, 503–512. [Google Scholar] [CrossRef]
- Lu, H.; Chan, S.S.M.; Chan, W.C.; Lin, C.; Cheng, C.P.W.; Linda Chiu Wa, L. Randomized controlled trial of TDCS on cognition in 201 seniors with mild neurocognitive disorder. Ann. Clin. Transl. Neurol. 2019, 6, 1938–1948. [Google Scholar] [CrossRef]
- Gonzalez, P.C.; Fong, K.N.K.; Brown, T. Transcranial direct current stimulation as an adjunct to cognitive training for older adults with mild cognitive impairment: A randomized controlled trial. Ann. Phys. Rehabil. Med. 2021, 64, 101536. [Google Scholar] [CrossRef]
- Rodella, C.; Bernini, S.; Panzarasa, S.; Sinforiani, E.; Picascia, M.; Quaglini, S.; Cavallini, E.; Vecchi, T.; Tassorelli, C.; Bottiroli, S. A double-blind randomized controlled trial combining cognitive training (CoRe) and neurostimulation (tDCS) in the early stages of cognitive impairment. Aging Clin. Exp. Res. 2022, 34, 73–83. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Liu, M.N.; Wang, H.C.; Walsh, V.; Lau, C.I. Combining Transcranial Direct Current Stimulation With Tai Chi to Improve Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial. Front. Aging Neurosci. 2021, 13, 766649. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, A.; Anthony, M.; Tadin, D.; Porsteinsson, A.P.; Heffner, K.; Lin, F.V. Effect of online tDCS to left somatomotor cortex on neuropsychiatric symptoms among older adults at risk for dementia. Cortex 2023, 159, 131–141. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.V.C.; Grittner, U.; Rujescu, D.; Külzow, N.; Flöel, A. Impact of 3-Day Combined Anodal Transcranial Direct Current Stimulation-Visuospatial Training on Object-Location Memory in Healthy Older Adults and Patients with Mild Cognitive Impairment. J. Alzheimers Dis. 2020, 75, 223–244. [Google Scholar] [CrossRef]
- Adenzato, M.; Manenti, R.; Enrici, I.; Gobbi, E.; Brambilla, M.; Alberici, A.; Cotelli, M.S.; Padovani, A.; Borroni, B.; Cotelli, M. Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: A randomized, double-blind, sham-controlled study. Transl. Neurodegener. 2019, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Iordan, A.D.; Ryan, S.; Tyszkowski, T.; Peltier, S.J.; Rahman-Filipiak, A.; Hampstead, B.M. High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment. Cereb. Cortex 2022, 32, 5230–5241. [Google Scholar] [CrossRef]
- Huo, L.; Zhu, X.; Zheng, Z.; Ma, J.; Ma, Z.; Gui, W.; Li, J. Effects of Transcranial Direct Current Stimulation on Episodic Memory in Older Adults: A Meta-analysis. J. Gerontol. Ser. B 2019, 76, 692–702. [Google Scholar] [CrossRef]
- Saleh, O.; Assaf, M.; Alzoubi, A.; Anshase, A.; Tarkhan, H.; Ayoub, M.; Abuelazm, M. The effects of transcranial direct current stimulation on cognitive function for mild cognitive impairment: A systematic review and meta-analysis of randomized controlled trials. Aging Clin. Exp. Res. 2023, 35, 2293–2306. [Google Scholar] [CrossRef]
- Tariq, R.; Kansal, B.; Shaikh, R.; Datta, S.; Anadkat, H.; Bista, S. Outcomes and Factors Affecting Transcranial Direct Current Stimulation in Alzheimer’s Disease Patients: A Systematic Review. Curr. Alzheimer Res. 2023, 20, 250–266. [Google Scholar] [CrossRef]
- Saxena, V.; Pal, A. Role of Transcranial Direct Current Stimulation in the Management of Alzheimer’s Disease: A Meta-analysis of Effects, Adherence and Adverse Effects. Clin. Psychopharmacol. Neurosci. 2021, 19, 589–599. [Google Scholar] [CrossRef]
- Duan, M.; Meng, Z.; Yuan, D.; Zhang, Y.; Tang, T.; Chen, Z.; Fu, Y. Anodal and cathodal transcranial direct current stimulations of prefrontal cortex in a rodent model of Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 968451. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, Q.; Kojima, S.; Ding, D.; Higashide, S.; Fukushima, M.; Hong, Z. Early Detection of Dementia using Risk Classification in MCI: Outcomes of Shanghai Mild Cognitive Impairment Cohort Study. Curr. Alzheimer Res. 2023, 20, 431–439. [Google Scholar] [CrossRef]
- Rao, G.; Gao, H.; Wang, X.; Zhang, J.; Ye, M.; Rao, L. MRI measurements of brain hippocampus volume in relation to mild cognitive impairment and Alzheimer disease: A systematic review and meta-analysis. Medicine 2023, 102, e34997. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.T.; Chen, Y.W.; Zeng, B.Y.; Zeng, B.S.; Hung, C.M.; Sun, C.K.; Cheng, Y.S.; Stubbs, B.; Carvalho, A.F.; Brunoni, A.R.; et al. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: A network meta-analysis of randomized controlled trials. Alzheimers Res. Ther. 2023, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Z.; Chen, Q.; Fu, Y.; Zheng, K. Transcranial Direct Current Stimulation Enhances Cognitive Function in Patients with Mild Cognitive Impairment and Early/Mid Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Brain Sci. 2022, 12, 562. [Google Scholar] [PubMed]
- Bjekić, J.; Manojlović, M.; Filipović, S.R. Transcranial Electrical Stimulation for Associative Memory Enhancement: State-of-the-Art from Basic to Clinical Research. Life 2023, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- Pallanti, S.; Grassi, E.; Knotkova, H.; Galli, G. Transcranial direct current stimulation in combination with cognitive training in individuals with mild cognitive impairment: A controlled 3-parallel-arm study. CNS Spectr. 2023, 28, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, L.; Feng, S.; Zhu, L.; Yang, L.; Liu, T.C.-Y.; Duan, R. Therapeutic non-invasive brain treatments in Alzheimer’s disease: Recent advances and challenges. Inflamm. Regen. 2022, 42, 31. [Google Scholar] [CrossRef]
- Snellman, A.; Ekblad, L.L.; Ashton, N.J.; Karikari, T.K.; Lantero-Rodriguez, J.; Pietilä, E.; Koivumäki, M.; Helin, S.; Karrasch, M.; Zetterberg, H.; et al. Head-to-head comparison of plasma p-tau181, p-tau231 and glial fibrillary acidic protein in clinically unimpaired elderly with three levels of APOE4-related risk for Alzheimer’s disease. Neurobiol. Dis. 2023, 183, 106175. [Google Scholar] [CrossRef] [PubMed]
- Dennis, N.A.; Gutchess, A.; Thomas, A.K. Overview of Models of Cognitive Aging. In The Cambridge Handbook of Cognitive Aging: A Life Course Perspective; Cambridge Handbooks in Psychology; Gutchess, A., Thomas, A.K., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 5–31. [Google Scholar]
- Vecchio, F.; Miraglia, F.; Rodella, C.; Alù, F.; Miniussi, C.; Rossini, P.M.; Pellicciari, M.C. tDCS effects on brain network properties during physiological aging. Pflug. Arch. 2021, 473, 785–792. [Google Scholar] [CrossRef]
- Miraglia, F.; Vecchio, F.; Pellicciari, M.C.; Cespon, J.; Rossini, P.M. Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex. Int. J. Neural. Syst. 2022, 32, 2150056. [Google Scholar] [CrossRef]
- Pittock, R.R.; Aakre, J.; Castillo, A.M.; Ramanan, V.K.; Kremers, W.K.; Jack, C.R.; Vemuri, P.; Lowe, V.J.; Knopman, D.S.; Petersen, R.C.; et al. Eligibility for Anti-Amyloid Treatment in a Population-Based Study of Cognitive Aging. Neurology 2023, 101, e1837–e1849. [Google Scholar] [CrossRef] [PubMed]
- Pezzoli, S.; Giorgio, J.; Martersteck, A.; Dobyns, L.; Harrison, T.M.; Jagust, W.J. Successful cognitive aging is associated with thicker anterior cingulate cortex and lower tau deposition compared to typical aging. Alzheimer’s Dement. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
Study ID | Design | Control Condition | Sample | tDCS Characteristics | tDCS Outcome | |||
---|---|---|---|---|---|---|---|---|
Participants | Age tDCS vs. Control (Mean ± SD) | Electrodes (Surface/Location 10–20 International System) | Sessions (Minutes/Sessions) | Intensity mA | ||||
Fileccia et al., 2019 [43] | single-blinded parallel RCT | Sham | n = 34 17 vs. 17 | 71.6 ± 1.4 vs. 69.7 ± 1.6 | Anode: 7 × 5 cm Cathode: 7 × 6 cm/ Anode: F3 (left DLPFC) Cathode: right deltoid muscle | 20/20 | 2 | Improvement in Brief Mental Deterioration Battery, figure naming test and Beck Depression Inventory. A trend to improvement in MMSE, immediate visual memory, barrage test and Rey’s 15-word delayed recall. |
Stonsaovapak et al., 2020 [44] | double-blinded parallel RCT | Sham | n = 55 23 vs. 22 | 68.39 ± 8.37 vs. 69.68 ± 7.60 | 5 × 5 cm/ Anodal: F4 (right DLPFC) Cathode: left supraorbital area | 20/12 | 2 | Immediate effect: significant increase in RVP total hits and DSM total score, decrease in SWM between errors and SWM total errors (effect not maintained after 4 and 8 weeks post-therapy). After 8 weeks, a significant decrease in the DSM and PRM latency post-therapy was observed. |
Manenti et al., 2020 [45] | double-blinded parallel RCT | Sham | n = 18 9 vs. 9 | 75.3 ± 4.8 vs. 75.3 ± 2.2 | 7 × 5 cm/ Anodal: F3(left LPFC) Cathode: FP2(right supraorbital) | 15/1 | 1.5 | May enhance word recognition but not free recalling. Decrease in the effect on day 30 after stimulation. |
Gu et al., 2022 [46] | double-blinded parallel RCT | Sham | n = 40 20 vs. 20 | 63.20 ± 6.98 vs. 65.15 ± 6.16 | 7 × 5 cm/ Anode: T3(left temporal area) Cathode: right shoulder deltoid muscle | 20/5 | 2 | After 5 days: improvement in MQ score, picture memory, visual regeneration, logical memory, memory spam, visual regeneration-delay and logical memory-delay. 4 weeks later, the effect was maintained. Increase in amplitude and decrease in latency of P300 wave after 5 days of therapy with maintenance after 4 weeks. |
Aksu et al., 2022 [47] | double-blinded parallel RCT | Sham | n = 26 13 vs. 13 | 65.52 ± 7.49 | 5 × 7 cm/ Anodal: F3(left DLPFC) Cathodal: F4(right DLPFC) | 20/10 | 2 | Significant immediate improvement in executive function and delayed recall domain with an important improvement in overall cognitive function after 1 month. |
Study ID | Design | Control Condition | Sample | tDCS Characteristics | tDCS Outcome | |||
---|---|---|---|---|---|---|---|---|
Participants | Age tDCS vs. Control (Mean ± SD) | Electrodes (Surface/Location 10–20 International System) | Sessions (Minutes/Sessions) | Intensity mA | ||||
Lawrence et al., 2018 [48] | parallel RCT | No intervention | n = 42 5 × 7 vs. 7 | 68.14 ± 8.69 vs. 65.57 ± 5.20 vs. 72 ± 6.45 vs. 63.57 ± 15.68 vs. 67.43 ± 6.37 vs. 72.29 ± 6.21 | 5 × 7 cm/ Anode: F3 (left DLPFC) Cathode: above the left eye | 20/4 | 1.5 | tDCS group improved on working and attention memory, and memory. CT + tDCS group improved on executive function, attention, working memory and ADL. Tailored CT + tDCS group improved on executive function, attention, working memory and memory. |
Das et al., 2019 [49] | double-blinded parallel RCT | Sham + SMART | n = 22 12 vs. 10 | 62.58 ± 8.43 vs. 63.30 ± 7.38 | 3 × 5 cm/ Anode: 0.5 cm above left eyebrow and 1 cm away from the center of the nasal bridge Cathode: right shoulder | 20/8 | 2 | Immediate cognitive improvement in sham group executive function of inhibition, innovation and episodic memory. Significant increase in cerebral blood flow in the middle frontal cortex in the active group. |
Martin et al., 2019 [50] | double-blinded parallel RCT | CT + Sham | n = 68 33 vs. 35 | 71.8 ± 6.39 vs. 71.6 ± 6.35 | 5 × 7 cm/ Anode:F3(left DLPC) Cathode: F8) | 30/15 | 2 | No significant difference between CT + sham and CT + tDCS |
Lu et al., 2019 [51] | double-blinded parallel RCT | tDCS + WMT/CT vs. Sham-tDCS + WMT | n = 201 69 vs. 68 vs. 64 | 74.2 ± 6.7 vs. 73.4 ± 6.1 vs. 74.5 ± 6.6 | 5 × 7 cm/ Anode: T3 (left LTC) Cathode: right upper limb | 20/12 | 2 | Improvement due to WM and CT training with no defervescences between groups on ADAS-Cog score, N-BACK test and RT. All groups showed improvement in delayed recall and working memory with the greatest benefit on tDCS-WMT group. |
Gonzalez et al., 2021 [52] | double-blinded parallel RCT | sham tDCS + CT group/CT group alone | n = 67 22 vs. 24 vs. 21 | 69.8 ± 5.3 vs. 71.0 ± 6.2 vs. 70.6 ± 5.4 | 5 × 3 cm/ Anodal:F3(left DLPFC) Cathode: right brachioradialis muscle | 30/9 | 1.5 | The association of CT + tDCS can improve the processing speed related to working memory and attention. No superior effects compared to sham + CT or CT alone. |
Rodella et al., 2022 [53] | double-blinded parallel RCT | Sham + CoRE | n = 33 16 vs. 17 | 71.62 ± 5.65 vs. 75.13 ± 4.76 | Anode: 16 cm2 Cathode: 50 cm2 / Anode: F3 (DLPFC)Cathode: right deltoid | 30/12 | 2 | After intervention: significant improvement in working memory, attention, processing speed; no significant difference in MMSE, episodic long-term memory, logical-executive function. No improvement in control group. After 6 months: significant improvement in working memory and an ascension toward significance in attention and processing speed; no significant difference in MMSE, episodic long-term memory, logical-executive function. Long-lasting improvement in working memory, attention and processing speed in the active arm. |
Study ID | Design | Control Condition | Sample | tDCS Characteristics | tDCS Outcome | |||
---|---|---|---|---|---|---|---|---|
Participants | Age tDCS vs. Control (Mean ± SD) | Electrodes (Surface/Location 10–20 International System) | Sessions (Minutes/Sessions) | Intensity mA | ||||
Lioa et al., 2021 [54] | double-blinded parallel RCT | Sham + Tai Chi | n = 20 10 vs. 10 | 72.6 ± 4.1 vs. 73.1 ± 4.6 | 5 × 7 cm/ Anodal: F3 (left DLPFC) Cathodal: F4 (right supraorbital area) | 20/36 | 2 | Significant increase in speed and cadence and increase in speed of cognitive dual-task gait. No significant cognitive task performance improvement. |
Turnbull et al., 2023 [55] | double-blinded parallel RCT | Sham + MOT | n = 40 20 vs. 20 | 70 ± 6.9 vs. 73 ± 7.1 | 30 cm/ Anodal: C3 (LSMC) Cathodal: Fp2 (orbitofrontal) | 20/7 | 1.5 | Immediately self-reported mood improvement from baseline/no improvement reported by caregivers. Decrees in LSMC activation; increase activation on post-central gyrus, LSMC-amygdala FC. |
de Sousa et al., 2020 [56] | single-blinded crossover RCT | Healthy patients | n = 48 16 vs. 32 | 70 ± 6 vs. 69 ± 7 | Anode: 5 × 7 cmCathode: 10 × 10 cm/ Anode: T6 (right temporoparietal cortex) Cathode: supraorbital area | 20/3 | 1 | Small benefit on short and long-memory recall; small benefit for patients with MCI; no benefit for HP in training success. No substantial effect on long-term memory. Improvement in OLM training + tDCS in HP and MCI patients. Small impact over sleep characteristics. MCI patients scored somewhat higher on affective state regarding “excitation and anxiety”. |
Adenzato et al., 2019 [57] | double-blinded crossover RCT | Sham/HC | n = 40 20 vs. 20 | 65.6 ± 8.4 vs. 69.4 ± 5.8 | 7 × 5 cm/ Anode: Fpz (MFC) Cathode: between Inion and OZ | 6/1 | 1.5 | Stimulated MCI patients have a decrease in latency in theory of mind tasks. |
Iordan et al., 2022 [58] | double-blinded crossover RCT | Sham | n = 42 20 vs. 22 | 72.15 ± 7.14 vs. 69.50 ± 6.55 | No surface mentioned/ Anode:p2 Cathode: CPz, CP6, POz, PO8 | 2/20 | 2 | No significant behavioral effect on performance in allocentric or egocentric navigation. May normalize whole brain network segregation during task performance. Increased segregation between the associating networks inducing a response in sensory–motor system; increase segregation in dorsal-attention and default-mode networks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palimariciuc, M.; Oprea, D.C.; Cristofor, A.C.; Florea, T.; Dobrin, R.P.; Dobrin, I.; Gireadă, B.; Gavril, R.; Mawas, I.; Bejenariu, A.C.; et al. The Effects of Transcranial Direct Current Stimulation in Patients with Mild Cognitive Impairment. Neurol. Int. 2023, 15, 1423-1442. https://doi.org/10.3390/neurolint15040092
Palimariciuc M, Oprea DC, Cristofor AC, Florea T, Dobrin RP, Dobrin I, Gireadă B, Gavril R, Mawas I, Bejenariu AC, et al. The Effects of Transcranial Direct Current Stimulation in Patients with Mild Cognitive Impairment. Neurology International. 2023; 15(4):1423-1442. https://doi.org/10.3390/neurolint15040092
Chicago/Turabian StylePalimariciuc, Matei, Dan Cătălin Oprea, Ana Caterina Cristofor, Tudor Florea, Romeo Petru Dobrin, Irina Dobrin, Bogdan Gireadă, Radu Gavril, Iasmin Mawas, Andreea Cristina Bejenariu, and et al. 2023. "The Effects of Transcranial Direct Current Stimulation in Patients with Mild Cognitive Impairment" Neurology International 15, no. 4: 1423-1442. https://doi.org/10.3390/neurolint15040092
APA StylePalimariciuc, M., Oprea, D. C., Cristofor, A. C., Florea, T., Dobrin, R. P., Dobrin, I., Gireadă, B., Gavril, R., Mawas, I., Bejenariu, A. C., Knieling, A., Ciobica, A., & Chiriță, R. (2023). The Effects of Transcranial Direct Current Stimulation in Patients with Mild Cognitive Impairment. Neurology International, 15(4), 1423-1442. https://doi.org/10.3390/neurolint15040092