Hemorrhagic Coagulation Disorders and Ischemic Stroke: How to Reconcile Both?
Abstract
:1. Background
2. Stratification of Bleeding Risk in Patients Treated for Vascular Events Prevention
3. Hemorrhagic Patients and Risk of Ischemic Stroke
4. Clinical Outcome of Frail Patients
4.1. Cerebrovascular Anatomical Condition and Hemorrhage and Ischemic Stroke Risk
4.2. Size and Severity of the Hemorrhage and Ischemic Stroke Risk
4.3. Individual Risk Factors in Patients with Hemorrhagic Transformation
4.4. Pathological Condition and Risk of Ischemic or Hemorrhagic Stroke
4.5. Therapies and Treatments Influences in Patients with Hemorrhagic Transformation
5. Ischemic and Hemorrhagic Stroke in COVID-19 Patients
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Poddar, R. Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke. Exp. Neurol. 2020, 336, 113541. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, I.; Passamonti, S.M.; Bucciarelli, P. Thrombophilic states. Handb. Clin. Neurol. 2014, 120, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Ciarambino, T.; Crispino, P.; Minervini, G.; Giordano, M. Cerebral Sinus Vein Thrombosis and Gender: A Not Entirely Casual Relationship. Biomedicines 2023, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Ciarambino, T.; Crispino, P.; Mastrolorenzo, E.; Viceconti, A.; Giordano, M. Stroke and Etiopathogenesis: What Is Known? Genes 2022, 13, 978. [Google Scholar] [CrossRef] [PubMed]
- Beyth, R.J.; Landefeld, C.S. Anticoagulants in older patients. A safety perspective. Drugs Aging 1995, 6, 45–54. [Google Scholar] [CrossRef]
- Cunningham, A.; Stein, C.M.; Chung, C.P.; Daugherty, J.R.; Smalley, W.E.; Ray, W.A. An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiol. Drug Saf. 2011, 20, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Mueller-Hennessen, M.; Milles, B.R.; Biener, M.; Hund, H.; Frey, N.; Giannitsis, E.; Salbach, C. Real-World Evidence on Disparities on the Initiation of Ticagrelor Versus Prasugrel in Patients with Acute Coronary Syndrome. J. Am. Heart Assoc. 2023, 12, e030879. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.-J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef]
- Reilly, P.A.; Lehr, T.; Haertter, S.; Connolly, S.J.; Yusuf, S.; Eikelboom, J.W.; Ezekowitz, M.D.; Nehmiz, G.; Wang, S.; Wallentin, L.; et al. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: The RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulation Therapy). J. Am. Coll. Cardiol. 2014, 63, 321–328. [Google Scholar] [CrossRef]
- Bansilal, S.; Bloomgarden, Z.; Halperin, J.L.; Hellkamp, A.S.; Lokhnygina, Y.; Patel, M.R.; Becker, R.C.; Breithardt, G.; Hacke, W.; Hankey, G.J.; et al. Efficacy and safety of rivaroxaban in patients with diabetes and nonvalvular atrial fibrillation: The Rivaroxaban Once-daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF Trial). Am. Heart J. 2015, 170, 675–682.e8. [Google Scholar] [CrossRef]
- Guimarães, P.O.; Pokorney, S.D.; Lopes, R.D.; Wojdyla, D.M.; Gersh, B.J.; Giczewska, A.; Carnicelli, A.; Lewis, B.S.; Hanna, M.; Wallentin, L.; et al. Efficacy and safety of apixaban vs warfarin in patients with atrial fibrillation and prior bioprosthetic valve replacement or valve repair: Insights from the ARISTOTLE trial. Clin. Cardiol. 2019, 42, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.T.; Giugliano, R.P.; Ruff, C.T.; Koretsune, Y.; Yamashita, T.; Kiss, R.G.; Nordio, F.; Murphy, S.A.; Kimura, T.; Jin, J.; et al. Efficacy and Safety of Edoxaban in Elderly Patients with Atrial Fibrillation in the ENGAGE AF–TIMI 48 Trial. J. Am. Heart Assoc. 2016, 5, e003432. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.P.; Snipes, S.A.; King, D.W.; Torres-Vigil, I.; Goldberg, D.S.; Weinberg, A.D. Disparate Inclusion of Older Adults in Clinical Trials: Priorities and Opportunities for Policy and Practice Change. Am. J. Public Health 2010, 100 (Suppl. 1), S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.A.; Griffin, M.R.; Avorn, J. Evaluating Drugs after Their Approval for Clinical Use. N. Engl. J. Med. 1993, 329, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Chae, J.; Yoon, S.H.; Kim, D.S. Factors related to polypharmacy and hyper-polypharmacy for the elderly: A nationwide cohort study using National Health Insurance data in South Korea. Clin. Transl. Sci. 2022, 16, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, A.M.; Pereira, J.A.; Labiris, R.; McDonald, H.; Douketis, J.D.; Crowther, M.; Wells, P.S. Systematic Overview of Warfarin and Its Drug and Food Interactions. Arch. Intern. Med. 2005, 165, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yu, J.; Carcel, C.; Delcourt, C.; Shan, J.; Lindley, R.I.; Neal, B.; Anderson, C.S.; Hackett, M.L. Resuming anticoagulants after anticoagulation-associated intracranial haemorrhage: Systematic review and meta-analysis. BMJ Open 2018, 8, e019672. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Romagnoli, E.; Arioli, D.; Coluccio, V.; Marrazzo, A.; Athanasiou, A.; Di Girolamo, M.; Cappi, C.; Marietta, M.; Capitelli, M. Risk and Management of Bleeding Complications with Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Venous Thromboembolism: A Narrative Review. Adv. Ther. 2023, 40, 41–66. [Google Scholar] [CrossRef]
- Shorr, R.I.; Ray, W.A.; Daugherty, J.R.; Griffin, M.R. Concurrent Use of Nonsteroidal Anti-inflammatory Drugs and Oral Anticoagulants Places Elderly Persons at High Risk for Hemorrhagic Peptic Ulcer Disease. Arch. Intern. Med. 1993, 153, 1665–1670. [Google Scholar] [CrossRef]
- Penner, L.S.; Gavan, S.P.; Ashcroft, D.M.; Peek, N.; Elliott, R.A. Does coprescribing nonsteroidal anti-inflammatory drugs and oral anticoagulants increase the risk of major bleeding, stroke and systemic embolism? Br. J. Clin. Pharmacol. 2022, 88, 4789–4811. [Google Scholar] [CrossRef]
- Proietti, M.; Cesari, M. Describing the relationship between atrial fibrillation and frailty: Clinical implications and open research questions. Exp. Gerontol. 2021, 152, 111455. [Google Scholar] [CrossRef]
- Proietti, M.; Romiti, G.F.; Vitolo, M.; Harrison, S.L.; Lane, D.A.; Fauchier, L.; Marin, F.; Näbauer, M.; Potpara, T.S.; Dan, G.-A.; et al. Epidemiology and impact of frailty in patients with atrial fibrillation in Europe. Age Ageing 2022, 51, afac192. [Google Scholar] [CrossRef] [PubMed]
- Borre, E.D.; Goode, A.; Raitz, G.; Shah, B.; Lowenstern, A.; Chatterjee, R.; Sharan, L.; Allen LaPointe, N.M.; Yapa, R.; Davis, J.K.; et al. Predicting Thromboembolic and Bleeding Event Risk in Patients with Non-Valvular Atrial Fibrillation: A Systematic Review. Thromb. Haemost. 2018, 118, 2171–2187. [Google Scholar] [CrossRef] [PubMed]
- Guidoux, C.; Meseguer, E.; Ong, E.; Lavallée, P.C.; Hobeanu, C.; Monteiro-Tavares, L.; Charles, H.; Cabrejo, L.; Martin-Bechet, A.; Rigual, R.; et al. Twelve-month outcome in patients with stroke and atrial fibrillation not suitable to oral anticoagulant strategy: The WATCH-AF registry. Open Heart 2019, 6, e001187. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Cheng, H.; Wang, X.; Ouyang, M.; Shajahan, S.; Carcel, C.; Anderson, C.; Kristoffersen, E.S.; Lin, Y.; Sandset, E.C.; et al. Antithrombotics prescription and adherence among stroke survivors: A systematic review and meta-analysis. Brain Behav. 2022, 12, e2752. [Google Scholar] [CrossRef] [PubMed]
- Lowres, N.; Giskes, K.; Hespe, C.; Freedman, B. Reducing Stroke Risk in Atrial Fibrillation: Adherence to Guidelines Has Improved, but Patient Persistence with Anticoagulant Therapy Remains Suboptimal. Korean Circ. J. 2019, 49, 883–907. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.; Nga, E.; Navaratnasingham, R. Should a patient with primary intracerebral haemorrhage receive antiplatelet or anticoagulant therapy? BMJ 2005, 331, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R.; Doney, A. Antithrombotic medicines following intracerebral haemorrhage: Where’s the evidence? Ther. Adv. Drug Saf. 2011, 2, 205–211. [Google Scholar] [CrossRef]
- Vermeer, S.E.; Algra, A.; Franke, C.L.; Koudstaal, P.J.; Rinkel, G.J. Long-term prognosis after recovery from primary intracerebral hemorrhage. Neurology 2002, 59, 205–209. [Google Scholar] [CrossRef]
- Li, L.; Murthy, S.B. Cardiovascular Events After Intracerebral Hemorrhage. Stroke 2022, 53, 2131–2141. [Google Scholar] [CrossRef]
- Wong, Y.-S.; Tsai, C.-F.; Ong, C.-T. Risk factors for stroke recurrence in patients with hemorrhagic stroke. Sci. Rep. 2022, 12, 17151. [Google Scholar] [CrossRef]
- Flynn, R.W.; MacDonald, T.M.; Murray, G.D.; Doney, A.S. Systematic Review of Observational Research Studying the Long-Term use of Antithrombotic Medicines Following Intracerebral Hemorrhage. Cardiovasc. Ther. 2010, 28, 177–184. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Keir, S.L.; Seymour, J.; Lewis, S.; Sandercock, P.A.G.; Dennis, M.S.; Cairns, J. What is the best imaging strategy for acute stroke? Int. J. Technol. Assess. Health Care 2005, 21, 148. [Google Scholar] [CrossRef]
- Bailey, R.D.; Hart, R.G.; Benavente, O.; Pearce, L.A. Recurrent brain hemorrhage is more frequent than ischemic stroke after intracranial hemorrhage. Neurology 2001, 56, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Luengo-Fernandez, R.; Zuurbier, S.M.; Beddows, N.C.; Lavallee, P.; Silver, L.E.; Kuker, W.; Rothwell, P.M. Ten-year risks of recurrent stroke, disability, dementia and cost in relation to site of primary intracerebral haemorrhage: Population-based study. J. Neurol. Neurosurg. Psychiatry 2020, 91, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.; Rakich, S.M.; Engel, C.; Snider, R.; Rosand, J.; Greenberg, S.M.; Smith, E.E. Antiplatelet use after intracerebral hemorrhage. Neurology 2006, 66, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: A Report from the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.P.; Bonomo, J.B.; Kissela, B.M.; Khoury, J.C.; Moomaw, C.J.; Alwell, K.; Woo, D.; Flaherty, M.L.; Khatri, P.; Adeoye, O.; et al. Withdrawal of Antithrombotic Agents and Its Impact on Ischemic Stroke Occurrence. Stroke 2011, 42, 2509–2514. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.S.; Nam, C.M.O.; Heo, J.H. Effects of Statin Intensity and Adherence on the Long-Term Prognosis after Acute Ischemic Stroke. Stroke 2017, 48, 2723–2730. [Google Scholar] [CrossRef] [PubMed]
- Rijkmans, M.; de Jong, G.; Van Den Berg, J.S.P. Non-persistence in ischaemic stroke: Risk of recurrent vascular events. Acta Neurol. Scand. 2018, 137, 288–292. [Google Scholar] [CrossRef]
- Kirley, K.; Rao, G.; Bauer, V.; Masi, C. The Role of NOACs in Atrial Fibrillation Management: A Qualitative Study. J. Atr. Fibrillation 2016, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.C.; Maddox, T.M.; Kennedy, K.F.; Katz, D.F.; Marzec, L.N.; Lubitz, S.A.; Gehi, A.K.; Turakhia, M.P.; Marcus, G.M. Oral Anticoagulant Therapy Prescription in Patients with Atrial Fibrillation Across the Spectrum of Stroke Risk. JAMA Cardiol. 2016, 1, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.S.; He, M.; Gabriel, N.; Magnani, J.W.; Kimmel, S.E.; Gellad, W.F.; Hernandez, I. Underprescribing vs underfilling to oral anticoagulation: An analysis of linked medical record and claims data for a nationwide sample of patients with atrial fibrillation. J. Manag. Care Spéc. Pharm. 2022, 28, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.K.; Stewart, J.; Blair, M.; Oxley, S.; Wass, A.; Taylor-Rowan, M.; Quinn, T.J. Prevalence and implications of frailty in acute stroke: Systematic review & meta-analysis. Age Ageing 2022, 51, afac064. [Google Scholar] [CrossRef] [PubMed]
- Conroy, S.; Carpenter, C.; Banerjee, J. Silver Book II: Quality Care for Older People with Urgent Care Needs. 2021. Available online: https://www.bgs.org.uk/resources/resource-series/silver-book-ii (accessed on 1 November 2023).
- Quinn, T.J.; Taylor-Rowan, M.; Coyte, A.; Clark, A.B.; Musgrave, S.D.; Metcalf, A.K.; Day, D.J.; Bachmann, M.O.; Warburton, E.A.; Potter, J.F.; et al. Pre-Stroke Modified Rankin Scale: Evaluation of Validity, Prognostic Accuracy, and Association with Treatment. Front. Neurol. 2017, 8, 275. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Howlett, S.E. Fifteen years of progress in understanding frailty and health in aging. BMC Med. 2018, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Wilkinson, C.; Clegg, A.; Todd, O.; Rockwood, K.; Yadegarfar, M.E.; Gale, C.P.; Hall, M. Atrial fibrillation and oral anticoagulation in older people with frailty: A nationwide primary care electronic health records cohort study. Age Ageing 2021, 50, 772–779. [Google Scholar] [CrossRef]
- Wilkinson, C.; Todd, O.; Clegg, A.; Gale, C.P.; Hall, M. Management of atrial fibrillation for older people with frailty: A systematic review and meta-analysis. Age Ageing 2019, 48, 196–203. [Google Scholar] [CrossRef]
- Wilkinson, C.; Wu, J.; Searle, S.D.; Todd, O.; Hall, M.; Kunadian, V.; Clegg, A.; Rockwood, K.; Gale, C.P. Clinical outcomes in patients with atrial fibrillation and frailty: Insights from the ENGAGE AF-TIMI 48 trial. BMC Med. 2020, 18, 401. [Google Scholar] [CrossRef]
- Farooqi, M.A.M.; Gerstein, H.; Yusuf, S.; Leong, D.P. Accumulation of Deficits as a Key Risk Factor for Cardiovascular Morbidity and Mortality: A Pooled Analysis of 154,000 Individuals. J. Am. Heart Assoc. 2020, 9, e014686. [Google Scholar] [CrossRef] [PubMed]
- Stow, D.; Matthews, F.E.; Hanratty, B. Frailty trajectories to identify end of life: A longitudinal population-based study. BMC Med. 2018, 16, 171. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, J.-A.; Dilaveris, P.E.; et al. The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2020, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.A.G.; Martín-Pérez, M.; Vora, P.; Roberts, L.; Balabanova, Y.; Brobert, G.; Fatoba, S.; Suzart-Woischnik, K.; Schaefer, B.; Ruigomez, A. Appropriateness of initial dose of non-vitamin K antagonist oral anticoagulants in patients with non-valvular atrial fibrillation in the UK. BMJ Open 2019, 9, e031341. [Google Scholar] [CrossRef] [PubMed]
- Okumura, K.; Akao, M.; Yoshida, T.; Kawata, M.; Okazaki, O.; Akashi, S.; Eshima, K.; Tanizawa, K.; Fukuzawa, M.; Hayashi, T.; et al. Low-Dose Edoxaban in Very Elderly Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1735–1745. [Google Scholar] [CrossRef]
- Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018, 163–164, 144–171. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Despres, J.-P.; Fullerton, H.J.; et al. Stroke Statistics Subcommittee (2016). Heart Disease and Stroke Statistics-2016 Update: A Report from the American Heart Association. Circulation 2016, 133, e38–e60. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Xiao, Y.; Hua, Z.; Cheng, J.; Jia, J. Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke. Transl. Stroke Res. 2016, 7, 209–219. [Google Scholar] [CrossRef]
- Jin, X.; Liu, J.; Liu, W. Early Ischemic Blood Brain Barrier Damage: A Potential Indicator for Hemorrhagic Transformation Following Tissue Plasminogen Activator (tPA) Thrombolysis? Curr. Neurovasc. Res. 2014, 11, 254–262. [Google Scholar] [CrossRef]
- Jickling, G.C.; Liu, D.; Stamova, B.; Ander, B.P.; Zhan, X.; Lu, A.; Sharp, F.R. Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2013, 34, 185–199. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Chen, Q.; Wang, J. Hemorrhagic Transformation after Tissue Plasminogen Activator Reperfusion Therapy for Ischemic Stroke: Mechanisms, Models, and Biomarkers. Mol. Neurobiol. 2015, 52, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Zuo, Z.; Wang, Z.; Roy, J.; Hou, Q.; Tong, E.; Hoffmann, A.; Sperberg, E.; Bredno, J.; et al. Effects of tissue plasminogen activator timing on blood–brain barrier permeability and hemorrhagic transformation in rats with transient ischemic stroke. J. Neurol. Sci. 2014, 347, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Lioutas, V.-A.; Beiser, A.; Himali, J.; Aparicio, H.; Romero, J.R.; DeCarli, C.; Seshadri, S. Lacunar Infarcts and Intracerebral Hemorrhage Differences: A Nested Case-Control Analysis in the FHS (Framingham Heart Study). Stroke 2017, 48, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Lioutas, V.-A.; Beiser, A.S.; Aparicio, H.J.; Himali, J.J.; Selim, M.H.; Romero, J.R.; Seshadri, S. Assessment of Incidence and Risk Factors of Intracerebral Hemorrhage Among Participants in the Framingham Heart Study Between 1948 and 2016. JAMA Neurol. 2020, 77, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, I.R.F.; Provencio, J.J. Intracerebral Hemorrhage in Patients Receiving Oral Anticoagulation Therapy. J. Intensiv. Care Med. 2015, 30, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Kuramatsu, J.B.; Leasure, A.; Falcone, G.J.; Kamel, H.; Sansing, L.H.; Kourkoulis, C.; Schwab, K.; Elm, J.J.; Gurol, M.E.; et al. Cardioembolic Stroke Risk and Recovery After Anticoagulation-Related Intracerebral Hemorrhage. Stroke 2018, 49, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Riahi, E.B.; Adelborg, K.; Pedersen, L.; Kristensen, S.R.; Hansen, A.T.; Sørensen, H.T. Atrial fibrillation, liver cirrhosis, thrombosis, and bleeding: A Danish population-based cohort study. Res. Pract. Thromb. Haemost. 2022, 6, e12668. [Google Scholar] [CrossRef]
- Muscari, A.; Masetti, G.; Faccioli, L.; Ghinelli, M.; Trossello, M.P.; Puddu, G.M.; Spinardi, L.; Zoli, M. Association of Left Ventricular Hypertrophy and Atrial Fibrillation with Hemorrhagic Evolution of Small Vessel Disease. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2021, 30, 105946. [Google Scholar] [CrossRef]
- Stanton, R.; Demel, S.L.; Flaherty, M.L.; Antzoulatos, E.; Gilkerson, L.A.; Osborne, J.; Behymer, T.P.; Moomaw, C.J.; Sekar, P.; Langefeld, C.; et al. Risk of intracerebral haemorrhage from hypertension is greatest at an early age. Eur. Stroke J. 2021, 6, 28–35. [Google Scholar] [CrossRef]
- Neuberger, U.; Kickingereder, P.; Schönenberger, S.; Schieber, S.; Ringleb, P.A.; Bendszus, M.; Pfaff, J.; Möhlenbruch, M.A. Risk factors of intracranial hemorrhage after mechanical thrombectomy of anterior circulation ischemic stroke. Neuroradiology 2019, 61, 461–469. [Google Scholar] [CrossRef]
- Sun, J.; Lam, C.; Christie, L.; Blair, C.; Li, X.; Werdiger, F.; Yang, Q.; Bivard, A.; Lin, L.; Parsons, M. Risk factors of hemorrhagic transformation in acute ischaemic stroke: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1079205. [Google Scholar] [CrossRef] [PubMed]
- Jaillard, A.; Cornu, C.; Durieux, A.; Moulin, T.; Boutitie, F.; Lees, K.R.; Hommel, M. Hemorrhagic transformation in acute ischemic stroke. The MAST-E study. MAST-E Group. Stroke 1999, 30, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.E.; Kotta, H.; Shariff, U.; Preston, L.; Tekle, W.; Qureshi, A. There Is No Association Between the Number of Stent Retriever Passes and the Incidence of Hemorrhagic Transformation for Patients Undergoing Mechanical Thrombectomy. Front. Neurol. 2019, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Pan, J.; Zhao, X.; Hou, Q.; Liu, B. Predicting hemorrhagic transformation after thrombectomy in acute ischemic stroke: A multimodal score of the regional pial collateral. Neuroradiology 2021, 64, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, Y.; Wang, H.; Yang, D.; Jiang, T.; Yuan, K.; Gong, P.; Xu, P.; Li, Y.; Chen, J.; et al. Symptomatic intracranial hemorrhage after mechanical thrombectomy in Chinese ischemic stroke patients: The Asian Score. Stroke 2020, 51, 2690–2696. [Google Scholar] [CrossRef] [PubMed]
- Mokin, M.; Kass-Hout, T.; Kass-Hout, O.; Dumont, T.M.; Kan, P.; Snyder, K.V.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I. Intravenous thrombolysis and endovascular therapy for acute ischemic stroke with internal carotid artery occlusion: A systematic review of clinical outcomes. Stroke 2012, 43, 2362–2368. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Khan, S.; Waqas, M.; Dossani, R.H.; Ruggiero, N.; Siddiqi, N.M.; Baig, A.A.; Rai, H.H.; Cappuzzo, J.M.; Levy, E.I.; et al. Mechanical thrombectomy versus intravenous alteplase alone in acute isolated posterior cerebral artery occlusion: A systematic review. J. NeuroInterv. Surg. 2022, 14, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Kuo, C.C.; Dossani, R.H.; Monteiro, A.; Baig, A.A.; Alkhaldi, M.; Cappuzzo, J.M.; Levy, E.I.; Siddiqui, A.H. Mechanical thrombectomy versus intravenous thrombolysis for distal large-vessel occlusion: A systematic review and meta-analysis of observational studies. Neurosurg. Focus 2021, 51, E5. [Google Scholar] [CrossRef]
- Molina, C.A.; Montaner, J.; Abilleira, S.; Ibarra, B.; Romero, F.; Arenillas, J.F.; Alvarez-Sabín, J. Timing of Spontaneous Recanalization and Risk of Hemorrhagic Transformation in Acute Cardioembolic Stroke. Stroke 2001, 32, 1079–1084. [Google Scholar] [CrossRef]
- Iancu, A.; Buleu, F.; Chita, D.S.; Tutelca, A.; Tudor, R.; Brad, S. Early Hemorrhagic Transformation after Reperfusion Therapy in Patients with Acute Ischemic Stroke: Analysis of Risk Factors and Predictors. Brain Sci. 2023, 13, 840. [Google Scholar] [CrossRef]
- NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 1997, 28, 2109–2118. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, C.S.; Saver, J.L.; Carneado, J.; Sayre, J.; Starkman, S.; Duckwiler, G.; Gobin, Y.P.; Jahan, R.; Vespa, P.; Villablanca, J.P.; et al. Predictors of hemorrhagic trans-formation in patients receiving intra-arterial thrombolysis. Stroke 2002, 33, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Bandela, S.; Mozumder, A.; Lee, B. Predictors of Hemorrhagic Transformation After Mechanical Thrombectomy in Acute Ischemic Stroke (1644). Neurology 2021, 96, 1644. [Google Scholar]
- Shen, Z.; Jin, H.; Lu, Y.; Sun, W.; Liu, R.; Li, F.; Shu, J.; Tai, L.; Li, G.; Chen, H.; et al. Predictors and Prognosis of Symptomatic Intracranial Hemorrhage in Acute Ischemic Stroke Patients Without Thrombolysis: Analysis of Data from the Chinese Acute Ischemic Stroke Treatment Outcome Registry. Front. Neurol. 2021, 12, 727304. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Kim, D.S.; Kim, M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front. Neurol. 2021, 12, 703258. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.K.; Lawrence, C.B. Comorbidity and age in the modeling of stroke: Are we still failing to consider the characteristics of stroke patients? BMJ Open Sci. 2020, 4, e100013. [Google Scholar] [CrossRef] [PubMed]
- Demchuk, A.M.; Morgenstern, L.B.; Krieger, D.W.; Linda Chi, T.; Hu, W.; Wein, T.H.; Hardy, R.J.; Grotta, J.C.; Buchan, A.M. Serum Glucose Level and Diabetes Predict Tissue Plasminogen Activator–Related Intracerebral Hemorrhage in Acute Ischemic Stroke. Stroke 1999, 30, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Jurcau, A.; Ardelean, A.I. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022, 10, 574. [Google Scholar] [CrossRef]
- Janaszak-Jasiecka, A.; Płoska, A.; Wierońska, J.M.; Dobrucki, L.W.; Kalinowski, L. Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets. Cell. Mol. Biol. Lett. 2023, 28, 21. [Google Scholar] [CrossRef]
- Martini, S.R.; Kent, T.A. Hyperglycemia in Acute Ischemic Stroke: A Vascular Perspective. J. Cereb. Blood Flow Metab. 2007, 27, 435–451. [Google Scholar] [CrossRef]
- Yeo, L.L.L.; Paliwal, P.; Teoh, H.L.; Seet, R.C.; Chan, B.P.L.; Liang, S.; Venketasubramanian, N.; Rathakrishnan, R.; Ahmad, A.; Ng, K.W.P.; et al. Timing of Recanalization After Intravenous Thrombolysis and Functional Outcomes After Acute Ischemic Stroke. JAMA Neurol. 2013, 70, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Tsivgoulis, G.; Saqqur, M.; Sharma, V.K.; Lao, A.Y.; Hill, M.D.; Alexandrov, A.V.; CLOTBUST Investigators. Asso-ciation of pretreatment blood pressure with tissue plasminogen activator-induced arterial recanalization in acute ischemic stroke. Stroke 2007, 38, 961–966. [Google Scholar] [CrossRef]
- Van den Berg, S.A.; Uniken Venema, S.M.; LeCouffe, N.E.; Postma, A.A.; Lycklama, À.; Nijeholt, G.J.; Rinkel, L.A.; Treurniet, K.M.; Kappelhof, M.; Bruggeman, A.E.; et al. Admission blood pressure and clinical outcomes in patients with acute ischaemic stroke treated with intravenous alteplase and endovascular treatment versus endovascular treatment alone: A MR CLEAN-NO IV substudy. Eur. Stroke J. 2023, 8, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Sandset, E.C.; Anderson, C.S.; Bath, P.M.; Christensen, H.; Fischer, U.; Gąsecki, D.; Lal, A.; Manning, L.S.; Sacco, S.; Steiner, T.; et al. European Stroke Organisation (ESO) guidelines on blood pressure management in acute ischaemic stroke and intracerebral haemorrhage. Eur. Stroke J. 2021, 6, XLVIII–LXXXIX. [Google Scholar] [CrossRef] [PubMed]
- Berg, S.A.v.D.; Venema, S.M.U.; Mulder, M.J.; Treurniet, K.M.; Samuels, N.; Lingsma, H.F.; Goldhoorn, R.-J.B.; Jansen, I.G.; Coutinho, J.M.; Roozenbeek, B.; et al. Admission Blood Pressure in Relation to Clinical Outcomes and Successful Reperfusion After Endovascular Stroke Treatment. Stroke 2020, 51, 3205–3214. [Google Scholar] [CrossRef] [PubMed]
- Mistry, E.A.; Mehta, T.; Mistry, A.; Arora, N.; Starosciak, A.K.; Rosa, F.D.L.R.L.; Siegler, J.E.; Chitale, R.; Anadani, M.; Yaghi, S.; et al. Blood Pressure Variability and Neurologic Outcome After Endovascular Thrombectomy: A Secondary Analysis of the BEST Study. Stroke 2020, 51, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Scutt, P.; Woodhouse, L.; Adami, A.; Becker, J.L.; Cala, L.A.; Casado, A.M.; Chen, C.; Dineen, R.A.; Gommans, J.; et al. Continuing versus Stopping Prestroke Antihypertensive Therapy in Acute Intracerebral Hemorrhage: A Subgroup Analysis of the Efficacy of Nitric Oxide in Stroke Trial. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2016, 25, 1017–1026. [Google Scholar] [CrossRef]
- Zhou, E.; Lord, A.; Boehme, A.; Henninger, N.; de Havenon, A.; Vahidy, F.; Ishida, K.; Torres, J.; Mistry, E.A.; Mac Grory, B.; et al. Risk of Ischemic Stroke in Patients with Atrial Fibrillation After Extracranial Hemorrhage. Stroke 2020, 51, 3592–3599. [Google Scholar] [CrossRef]
- Dang, H.; Ge, W.-Q.; Zhou, C.-F.; Zhou, C.-Y. The Correlation between Atrial Fibrillation and Prognosis and Hemorrhagic Transformation. Eur. Neurol. 2019, 82, 9–14. [Google Scholar] [CrossRef]
- Chai, J.; Nie, H.; Wu, X.; Guan, Y.; Dai, T.; Shen, Y. The clinical and neuroradiological features of patients of coexisting atraumatic convexity subarachnoid hemorrhage and large artery atherosclerosis stroke: A retrospective observational study. Medicine 2021, 100, e28155. [Google Scholar] [CrossRef]
- Kumar, S.; Goddeau, R.P.; Selim, M.H.; Thomas, A.; Schlaug, G.; Alhazzani, A.; Searls, D.E.; Caplan, L.R. Atraumatic convexal subarachnoid hemorrhage: Clinical presentation, imaging patterns, and etiologies. Neurology 2010, 74, 893–899. [Google Scholar] [CrossRef]
- Usmani, N.; Ahmad, F.; Koch, S. Convexity subarachnoid hemorrhage in ischemic stroke. J. Neurol. Sci. 2015, 348, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Inatomi, Y.; Yonehara, T.; Hirano, T.; Ando, Y. Nontraumatic convexal subarachnoid hemorrhage concomitant with acute ischemic stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2014, 23, 1564–1570. [Google Scholar] [CrossRef] [PubMed]
- Safan, A.S.; Imam, Y.; Akhtar, N.; Al-Taweel, H.; Zakaria, A.; Quateen, A.; Own, A.; Kamran, S. Acute ischemic stroke and convexity subarachnoid hemorrhage in large vessel atherosclerotic stenosis: Case series and review of the literature. Clin. Case Rep. 2022, 10, e5968. [Google Scholar] [CrossRef] [PubMed]
- Takamiya, S.; Yoshimoto, T.; Maruichi, K. Subarachnoid Hemorrhage with Progressive Cerebral Steno-Occlusive Disease: Report of 2 Cases. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2019, 28, e14–e16. [Google Scholar] [CrossRef] [PubMed]
- Graff-Radford, J.; Fugate, J.E.; Klaas, J.; Flemming, K.D.; Brown, R.D.; Rabinstein, A.A. Distinguishing clinical and radiological features of non-traumatic convexal subarachnoid hemorrhage. Eur. J. Neurol. 2016, 23, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Introna, A.; Mezzapesa, D.M.; Petruzzellis, M.; Savarese, M.; Chiumarulo, L.; Zimatore, D.S.; Dicuonzo, F.; Simone, I.L. Convexal subarachnoid hemorrhage and acute ischemic stroke: A border zone matter? Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2019, 40, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Autieri, V.; Gaillard, N.; Mourand, I.; Laurent-Chabalier, S.; Mura, T.; Trandafir, C.; Wacongne, A.; de Champfleur, N.M.; Thouvenot, E.; Pereira, F.; et al. Primary acute convexity subarachnoid hemorrhage in older patients: Analysis of baseline, clinical and MRI characteristics including quantitative surface study and topographical probabilistic mapping of convexity subarachnoid hemorrhage. Acta Neurol. Belg. 2023, 123, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Xu, W.; Huang, H.; Bian, J.; Wang, A.; Bai, Y.; Lin, J.; Xu, Y.; Lu, X.; Zhao, H. Cirrhosis and risk of stroke: A systematic review and meta-analysis. Atherosclerosis 2018, 275, 296–303. [Google Scholar] [CrossRef]
- Zheng, K.; Yoshida, E.M.; Tacke, F.; Li, Y.; Guo, X.; Qi, X. Risk of Stroke in Liver Cirrhosis: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2020, 54, 96–105. [Google Scholar] [CrossRef]
- Ferro, J.M.; Infante, J. Cerebrovascular manifestations in hematological diseases: An update. J. Neurol. 2021, 268, 3480–3492. [Google Scholar] [CrossRef] [PubMed]
- Momozaki, A.; Masuoka, J.; Furukawa, T.; Koguchi, M.; Ito, H.; Yoshioka, F.; Inoue, K.; Ogata, A.; Nakahara, Y.; Abe, T. Hemorrhagic stroke associated with essential thrombocythemia: Case report and literature review. J. Stroke Cerebrovasc. Dis. 2020, 29, 105069. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Ueno, Y.; Kamo, H.; Edahiro, Y.; Miyamoto, N.; Yamashiro, K.; Tanaka, R.; Shimo, Y.; Komatsu, N.; Hattori, N. Specific mechanisms of subarachnoid hemorrhage accompanied by ischemic stroke in essential thrombocythemia: Two case reports and a literature review. J. Neurol. 2019, 266, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Polycythemia vera treatment algorithm 2018. Blood Cancer J. 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, C.; Kim, T.; Lansigan, F.; Shatzel, J.; Friedman, H. The Epidemiology and Clinical Associations of Stroke in Patients with Acute Myeloid Leukemia: A Review of 10,972 Admissions From the 2012 National Inpatient Sample. Clin. Lymphoma Myeloma Leuk. 2018, 18, 74–77.e1. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, A.; Wright, C.H.; Wright, J.M.; Jensen, K.; Malloy, P.; Elder, T.; Burant, C.; Sajatovic, M.; Hoffer, A. Outcomes and Clinical Characteristics of Intracranial Hemorrhage in Patients with Hematologic Malignancies: A Systematic Literature Review. World Neurosurg. 2020, 144, e15–e24. [Google Scholar] [CrossRef]
- Sanz, M.A.; Montesinos, P. Advances in the management of coagulopathy in acute promyelocytic leukemia. Thromb. Res. 2020, 191, S63–S67. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Zhang, Y.; Tchelebi, L.T.; Mackley, H.B.; Chinchilli, V.M.; Zacharia, B.E. Stroke among cancer patients. Nat. Commun. 2019, 10, 5172. [Google Scholar] [CrossRef]
- Smith, N.; Kimberger, K.; Parrish, C.; Currie, S.; Butterworth, S.; Alty, J. Multiple myeloma with multiple neurological presentations. Pract. Neurol. 2019, 19, 511–517. [Google Scholar] [CrossRef]
- Pinto, M.J.; Medeiros, P.B.; Príncipe, F.; Carvalho, M. Cerebral Venous Thrombosis in Hematological Malignancy: Balancing the Risks. J. Stroke Cerebrovasc. Dis. 2020, 29, 104683. [Google Scholar] [CrossRef] [PubMed]
- Fotiou, D.; Gavriatopoulou, M.; Terpos, E. Multiple Myeloma and Thrombosis: Prophylaxis and Risk Prediction Tools. Cancers 2020, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Osafehinti, D.; Zivari, K. Case of Stroke from Cerebral Vasculitis following Carfilzomib, Lenalidomide, and Dexamethasone Therapy in a Patient with Relapsing Multiple Myeloma. Case Rep. Hematol. 2019, 2019, 5180424. [Google Scholar] [CrossRef] [PubMed]
- Tomich, C.; Debruxelles, S.; Delmas, Y.; Sagnier, S.; Poli, M.; Olindo, S.; Renou, P.; Rouanet, F.; Sibon, I. Immune-Thrombotic Thrombocytopenic Purpura is a Rare Cause of Ischemic Stroke in Young Adults: Case Reports and Literature Review. J. Stroke Cerebrovasc. Dis. 2018, 27, 3163–3171. [Google Scholar] [CrossRef]
- Padrini, R. Clinical Pharmacokinetics and Pharmacodynamics of Direct Oral Anticoagulants in Patients with Renal Failure. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.; Hartemink, J.; Saha, A.; Mitra, R.; Lewis, P.; Power, A.; Choudhuri, S.; Mitra, S.; Thachil, J. A systematic review of the efficacy and safety of anticoagulants in advanced chronic kidney disease. J. Nephrol. 2022, 35, 2015–2033. [Google Scholar] [CrossRef]
- Reed, D.; Palkimas, S.; Hockman, R.; Abraham, S.; Le, T.; Maitland, H. Safety and effectiveness of apixaban compared to warfarin in dialysis patients. Res. Pract. Thromb. Haemost. 2018, 2, 291–298. [Google Scholar] [CrossRef]
- Sarratt, S.C.; Nesbit, R.; Moye, R. Safety Outcomes of Apixaban Compared with Warfarin in Patients With End-Stage Renal Disease. Ann. Pharmacother. 2017, 51, 445–450. [Google Scholar] [CrossRef]
- Kuno, T.; Takagi, H.; Ando, T.; Sugiyama, T.; Miyashita, S.; Valentin, N.; Shimada, Y.J.; Kodaira, M.; Numasawa, Y.; Briasoulis, A.; et al. Oral Anticoagulation for Patients with Atrial Fibrillation on Long-Term Dialysis. J. Am. Coll. Cardiol. 2020, 75, 273–285. [Google Scholar] [CrossRef]
- Parker, K.; Mitra, S.; Thachil, J. Is anticoagulating haemodialysis patients with non-valvular atrial fibrillation too risky? Br. J. Haematol. 2018, 181, 725–736. [Google Scholar] [CrossRef]
- RAF and RENO-EXTEND Investigators; Caliandro, P.; Cancelloni, V.; Marco, M.; Reale, G.; Zauli, A.; Agnelli, G.; Caso, V.; Becattini, C.; Calabresi, P.; et al. Risk of recurrent stroke in patients with atrial fibrillation treated with oral anticoagulants alone or in combination with anti-platelet therapy. Eur. Stroke J. 2023, 8, 722–730. [Google Scholar] [CrossRef]
- Purrucker, J.C.; Hölscher, K.; Kollmer, J.; Ringleb, P.A. Etiology of Ischemic Strokes of Patients with Atrial Fibrillation and Therapy with Anticoagulants. J. Clin. Med. 2020, 9, 2938. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Hart, R.G.; Connolly, S.J.; Bosch, J.; Shestakovska, O.; Ng, K.K.H.; Catanese, L.; Keltai, K.; Aboyans, V.; Alings, M. Stroke Outcomes in the COMPASS Trial. Circulation 2019, 139, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.S.; Bosch, J.; Eikelboom, J.W.; Connolly, S.J.; Diaz, R.; Widimsky, P.; Aboyans, V.; Alings, M.; Kakkar, A.K.; Keltai, K.; et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: An international, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 219–229. [Google Scholar] [CrossRef] [PubMed]
- So, C.H.; Eckman, M.H. Combined aspirin and anticoagulant therapy in patients with atrial fibrillation. J. Thromb. Thrombolysis 2017, 43, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Deana, C.; Bagatto, D. Severe stroke in patients admitted to intensive care unit after COVID-19 infection: Pictorial essay of a case series. Brain Hemorrhages 2022, 3, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Fara, M.G.; Stein, L.K.; Skliut, M.; Morgello, S.; Fifi, J.T.; Dhamoon, M.S. Macrothrombosis and stroke in patients with mild COVID-19 infection. J. Thromb. Haemost. 2020, 18, 2031–2033. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Liang, X.; Gao, B.; Liu, M.; Li, W.; Chen, Z.; Wang, Z. COVID-19 Associated Ischemic Stroke and Hemorrhagic Stroke: Incidence, Potential Pathological Mechanism, and Management. Front. Neurol. 2020, 11, 571996. [Google Scholar] [CrossRef]
- Pluta, J.; Cieniewicz, A.; Trzebicki, J. COVID-19: Coagulation disorders and anticoagulant treatment in patients hospitalised in ICU. Anaesthesiol. Intensiv. Ther. 2021, 53, 153–161. [Google Scholar] [CrossRef]
- Cuker, A.; Tseng, E.K.; Nieuwlaat, R.; Angchaisuksiri, P.; Blair, C.; Dane, K.; Davila, J.; DeSancho, M.T.; Diuguid, D.L.; Griffin, D.O.; et al. American Society of Hematology living guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19: July 2021 update on postdischarge thromboprophylaxis. Blood Adv. 2022, 6, 664–671. [Google Scholar] [CrossRef]
- Godon, A.; Tacquard, C.A.; Mansour, A.; Garrigue, D.; Nguyen, P.; Lasne, D.; Testa, S.; Levy, J.H.; Albaladejo, P.; Gruel, Y.; et al. Prevention of venous thromboembolism and haemostasis monitoring in patients with COVID-19: Updated proposals (April 2021): From the French working group on perioperative haemostasis (GIHP) and the French study group on thrombosis and haemostasis (GFHT), in collaboration with the French society of anaesthesia and intensive care (SFAR). Anaesth. Crit. Care Pain Med. 2021, 40, 100919. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, T.; Crewther, S.G.; Sales, C.; Karimi, L. COVID-19 Pathophysiology Predicts That Ischemic Stroke Occurrence Is an Expectation, Not an Exception—A Systematic Review. Front. Neurol. 2021, 11, 607221. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; El Naamani, K.; Sweid, A.; Schaefer, J.W.; Bekelis, K.; Sourour, N.; Elhorany, M.; Pandey, A.S.; Tjoumakaris, S.; Gooch, M.R.; et al. Intracranial Hemorrhage in Patients with Coronavirus Disease 2019 (COVID-19): A Case Series. World Neurosurg. 2021, 154, e473–e480. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Razavi, A.; Karimi, N.; Rouhani, N. COVID-19 and intracerebral haemorrhage: Causative or coincidental? New Microbes New Infect. 2020, 35, 100669. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Quinaglia, T.; Shabani, M.; Breder, I.; Silber, H.A.; Lima, J.A.; Sposito, A.C. Coronavirus disease-19: The multi-level, multi-faceted vasculopathy. Atherosclerosis 2021, 322, 39–50. [Google Scholar] [CrossRef]
- Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, C.; Oikonomou, E.; Antoniades, C.; Crea, F.; Kaski, J.C.; Tousoulis, D. Inflammatory Mechanisms in COVID-19 and Atherosclerosis: Current Pharmaceutical Perspectives. Int. J. Mol. Sci. 2021, 22, 6607. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crispino, P. Hemorrhagic Coagulation Disorders and Ischemic Stroke: How to Reconcile Both? Neurol. Int. 2023, 15, 1443-1458. https://doi.org/10.3390/neurolint15040093
Crispino P. Hemorrhagic Coagulation Disorders and Ischemic Stroke: How to Reconcile Both? Neurology International. 2023; 15(4):1443-1458. https://doi.org/10.3390/neurolint15040093
Chicago/Turabian StyleCrispino, Pietro. 2023. "Hemorrhagic Coagulation Disorders and Ischemic Stroke: How to Reconcile Both?" Neurology International 15, no. 4: 1443-1458. https://doi.org/10.3390/neurolint15040093