Deterioration of Cough, Respiratory, and Vocal Cord Functions in Patients with Multiple System Atrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Participants
2.3. Outcome Measure
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. PCF and Other Respiratory-Related Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelban, V.; Catereniuc, D.; Aftene, D.; Gasnas, A.; Vichayanrat, E.; Iodice, V.; Groppa, S.; Houlden, H. An update on MSA: Premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J. Neurol. 2020, 267, 2754–2770. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Dieriks, B.V. Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol. Neurodegener. 2022, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022, 10, 599. [Google Scholar] [CrossRef] [PubMed]
- Vichayanrat, E.; Valerio, F.; Koay, S.; Pablo-Fernandez, E.; Panicker, J.; Morris, H.; Bhatia, K.; Chelban, V.; Houlden, H.; Quinn, N.; et al. Diagnosing Premotor Multiple System Atrophy: Natural History and Autonomic Testing in an Autopsy-Confirmed Cohort. Neurology 2022, 99, e1168–e1177. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Geser, F.; Krismer, F.; Seppi, K.; Duerr, S.; Boesch, S.; Köllensperger, M.; Goebel, G.; Pfeiffer, K.P.; Barone, P.; et al. European Multiple System Atrophy Study Group: The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 2013, 12, 264–274. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Cao, B.; Zou, Y.; Wei, Q.Q.; Ou, R.W.; Liu, W.; Zhao, B.; Yang, J.; Wu, Y.; Shang, H.F. Causes of Death in Chinese Patients with Multiple System Atrophy. Aging. Dis. 2018, 9, 102–108. [Google Scholar] [CrossRef]
- Flabeau, O.; Ghorayeb, I.; Perez, P.; Maillard, A.; Taillard, J.; Philip, P.; Foubert-Samier, A.; Tison, F.; Meissner, W.G. Impact of sleep apnea syndrome on survival in patients with multiple system atrophy. Park. Relat. Disord. 2017, 35, 92–95. [Google Scholar] [CrossRef]
- Niederman, M.S.; Cilloniz, C. Aspiration pneumonia. Rev. Eso. Quimioter. 2022, 35 (Suppl. 1), 73–77. [Google Scholar] [CrossRef]
- Calandra-Buonaura, G.; Alfonsi, E.; Vignatelli, L.; Benarroch, E.E.; Giannini, G.; Iranzo, A.; Low, P.A.; Martinelli, P.; Provini, F.; Quinn, N.; et al. Dysphagia in multiple system atrophy consensus statement on diagnosis, prognosis and treatment. Park. Relat. Disord. 2021, 86, 124–132. [Google Scholar] [CrossRef]
- Gandor, F.; Vogel, A.; Claus, I.; Ahring, S.; Gruber, D.; Heinze, H.J.; Dziewas, R.; Ebersbach, G.; Warnecke, T. Laryngeal Movement Disorders in Multiple System Atrophy: A Diagnostic Biomarker? Mov. Disord. 2020, 35, 2174–2183. [Google Scholar] [CrossRef]
- Shimohata, T.; Shinoda, H.; Nakayama, H.; Ozawa, T.; Terajima, K.; Yoshizawa, H.; Matsuzawa, Y.; Onodera, O.; Naruse, S.; Tanaka, K.; et al. Daytime hypoxemia, sleep-disordered breathing, and laryngopharyn-geal findings in multiple system atrophy. Arch. Neurol. 2007, 64, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, W.; Gao, L.; Lu, J.; Gu, H.; Sun, L.; Tan, Y.; Zhang, Y. Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson’s disease and multiple system atrophy—comparison with normal elderly. PLoS ONE 2014, 9, e116123. [Google Scholar] [CrossRef] [PubMed]
- Cortelli, P.; Calandra-Buonaura, G.; Benarroch, E.E.; Giannini, G.; Iranzo, A.; Low, P.A.; Martinelli, P.; Provini, F.; Quinn, N.; Tolosa, E.; et al. Stridor in multiple system atrophy: Consensus statement on diagnosis, prognosis, and treatment. Neurology 2019, 93, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Chatwin, M.; Toussaint, M.; Gonçalves, M.R.; Sheers, N.; Mellies, U.; Gonzales-Bermejo, J.; Sancho, J.; Fauroux, B.; Andersen, T.; Hov, B.; et al. Airway clearance techniques in neuromuscular disorders: A state of the art review. Respir. Med. 2018, 136, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Morrow, B.; Argent, A.; Zampoli, M.; Human, A.; Corten, L.; Toussaint, M. Cough augmentation techniques for people with chronic neuromuscular disorders. Cochrane Database Syst. Rev. 2021, 4, CD013170. [Google Scholar] [CrossRef]
- Voulgaris, A.; Antoniadou, M.; Agrafiotis, M.; Steiropoulos, P. Respiratory involvement in patients with neuromuscular disease: A narrative review. Pulm Med. 2019, 2019, 2734054. [Google Scholar] [CrossRef]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Dürr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef]
- Choi, J.; Baek, S.; Kim, G.; Park, H.W. Peak Voluntary Cough Flow and Oropharyngeal Dysphagia as Risk Factors for Pneumonia. Ann Rehabil Med. 2021, 45, 431–439. [Google Scholar] [CrossRef]
- Standardization of Spirometry, 1994 Update. American Thoracic Society. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [CrossRef]
- Mętel, S.; Kostrzon, M.; Adamiak, J.; Janus, P. Respiratory Muscle Function in Older Adults with Chronic Respiratory Diseases after Pulmonary Rehabilitation in Subterranean Salt Chambers. J. Clin. Med. 2023, 12, 5120. [Google Scholar] [CrossRef]
- Ho, S.; Rock, K.; Addison, O.; Marchese, V. Relationships between diaphragm ultrasound, spirometry, and respiratory mouth pressures in children. Respir. Physiol. Neurobiol. 2022, 305, 103950. [Google Scholar] [CrossRef] [PubMed]
- Latoszek, B.B.V.; Watts, C.R.; Schwan, K.; Hetjens, S. The maximum phonation time as marker for voice treatment efficacy: A network meta-analysis. Clin. Otolaryngol. 2023, 48, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Krismer, F.; Seppi, K.; Jönsson, L.; Åström, D.O.; Berger, A.K.; Simonsen, J.; Gordon, M.F.; Wenning, G.K.; Poewe, W.; European Multiple System Atrophy Study Group Natural History Study Investigators, and the Rasagiline-for-Multiple System Atrophy Investigators. Sensitivity to Change and Patient-Centricity of the Unified Multiple System Atrophy Rating Scale Items: A Data-Driven Analysis. Mov. Disord. 2022, 37, 1425–1431. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease: Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Rodríguez-Blázquez, C.; Alvarez, M.; Arakaki, T.; Arillo, V.C.; Chaná, P.; Fernández, W.; Garretto, N.; Martínez-Castrillo, J.C.; Rodríguez-Violante, M.; et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Park. Relat. Disord. 2015, 21, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.B.; Oliveira, C.B.; Santos, A.; Pires, C.G.; Dylewski, V.; Arida, R.M. A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. Behav. Neurol. 2018, 2018, 2892065. [Google Scholar]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef]
- Ueno, T.; Marushima, A.; Kawamoto, H.; Shimizu, Y.; Watanabe, H.; Kadone, H.; Hiruta, K.; Yamauchi, S.; Endo, A.; Hada, Y.; et al. Staged treatment protocol for gait with hybrid assistive limb in the acute phase of patients with stroke. Assist. Technol. 2022, 34, 437–443. [Google Scholar] [CrossRef]
- Watanabe, H.; Saito, Y.; Terao, S.; Ando, T.; Kachi, T.; Mukai, E.; Aiba, I.; Abe, Y.; Tamakoshi, A.; Doyu, M.; et al. Progression and prognosis in multiple system atrophy: An analysis of 230 Japanese patients. Brain 2002, 125, 1070–1083. [Google Scholar] [CrossRef]
- Lee, K.K.; Davenport, P.W.; Smith, J.A.; Irwin, R.S.; McGarvey, L.; Mazzone, S.B.; Birring, S.S.; CHEST Expert Cough Panel. Global Physiology and Pathophysiology of Cough: Part 1: Cough Phenomenology—CHEST Guideline and Expert Panel Report. Chest 2021, 159, 282–293. [Google Scholar] [CrossRef]
- Ko, E.J.; Chae, M.; Cho, S.R. Relationship Between Swallowing Function and Maximum Phonation Time in Patients With Parkinsonism. Ann. Rehabil. Med. 2018, 42, 425–432. [Google Scholar] [CrossRef]
- Tsunoda, K.; Hashimoto, S.; Kuroda, H.; Ishii, T.; Takazawa, M. Exploring the Relation between Glottal Closure and Plasma Substance P: A Study Protocol. Tohoku J. Exp. Med. 2019, 249, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Vincent, F.; Salle, J.Y.; Antonini, M.T.; Aliamus, V.; Daviet, J.C. Acute stroke phase voluntary cough and correlation with maximum phonation time. Am. J. Phys. Med. Rehabil. 2012, 91, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Fontana, G.A.; Pantaleo, T.; Lavorini, F.; Benvenuti, F.; Gangemi, S. Defective motor control of coughing in Parkinson’s disease. Am. J. Respir. Crit. Care. Med. 1998, 158, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Borders, J.C.; Brandimore, A.E.; Troche, M.S. Variability of Voluntary Cough Airflow in Healthy Adults and Parkinson’s Disease. Dysphagia 2021, 36, 700–706. [Google Scholar] [CrossRef]
- Rodrigues de Góes, M.C.; Sarmento, A.; Lima, I.; Lyra, M.; Lima, C.; Aliverti, A.; Resqueti, V.; Fregonezi, G.A.F. After-effects of thixotropic conditionings on operational chest wall and compartmental volumes of patients with Parkinson’s disease. PLoS ONE 2022, 17, e0275584. [Google Scholar]
All (N = 17) | Ambulatory Group (N = 11) | Non-Ambulatory Group (N = 6) | p-Value | |
---|---|---|---|---|
Basic information | ||||
Gender (F/M) | 8/9 | 4/7 | 4/2 | 0.247 |
Height (cm) | 162.0 (157–171) | 168.0 (159.5–171.5) | 159.0 (157.3–161.5) | 0.256 |
Weight (kg) | 58.0 (43.8–62) | 59.0 (52.7–67) | 42.8 (40.4–57.5) | 0.180 |
BMI (kg/m2) | 20.3 (18–24.8) | 21.0 (20.2–24.9) | 18.1 (16.5–20.7) | 0.216 |
Age at onset (years) | 55.5 (53–63.9) | 53.9 (51.2–64.5) | 56.5 (53.5–60) | 0.733 |
Disease duration (months) | 48.0 (26–60) | 39.0 (22–51.5) | 57.5 (38.5–67.5) | 0.122 |
Sub-types (MSA-P/MSA-C) | 6/11 | 3/8 | 3/3 | 0.339 |
Cognitive function | ||||
HDS-R | 28.0 (26–29) | 28.0 (25.5–29) | 28.5 (27.3–29) | 0.462 |
MMSE (points) | 28.0 (26.5–29) | 28.0 (26.3–28.8) | 28.0 (27–30) | 0.768 |
FAB (points) | 14 (14–16.5) | 15 (14–16) | 14 (14–18) | 0.679 |
Motor function | ||||
FAC (N) | 17 | 11 | 6 | |
5 | - | 4 | - | - |
4 | - | 7 | - | - |
3 | - | 0 | - | - |
2 | - | - | 0 | - |
1 | - | - | 3 | - |
0 | - | - | 3 | - |
Hoehn and Yahr (total) | 4 (3–5) | 3 (3–4) | 5 (5–5) | <0.01 |
I | 0 | 0 | 0 | - |
II | 1 | 1 | 0 | - |
III | 5 | 5 | 0 | - |
IV | 4 | 3 | 1 | - |
V | 7 | 2 | 5 | - |
SARA (points) | 17.5 (15.5–25) | 16.0 (15–18.5) | 28.3 (25.5–32.1) | <0.01 |
MDS-UPDRS Part 3 (points) | 41.0 (34–67) | 36.0 (29.5–45) | 71.5 (68–79.5) | <0.01 |
UMSARS Part 1 (points) | 22.0 (20–29) | 20.0 (19–21.5) | 35.5 (30.5–38.3) | <0.01 |
UMSARS Part 2 (points) | 20.0 (16–33) | 16.0 (15.5–21) | 35.5 (33.5–37.5) | <0.01 |
UMSARS Part 4 (points) | 2 (2–4) | 2 (2–2) | 4 (4–4.8) | <0.01 |
Ambulatory Group | Non-Ambulatory Group | p-Value | ||
---|---|---|---|---|
Respiratory2735muscle strength | %PImax (%) | 65.8 (54.6–92.7) | 18.4 (14.4–30.4) | <0.01 |
%PEmax (%) | 63.3 (53.9–71.8) | 25.8 (21.5–33.7) | <0.01 | |
Respiratory function | %VC (%) | 84.0 (74.0–92.5) | 55.5 (38.8–62.5) | <0.01 |
%FVC (%) | 84.0 (74.5–93.5) | 47.0 (35.5–52.5) | <0.01 | |
%FEV1.0 (%) | 89.0 (81.0–92.0) | 45.5 (33.3–51.8) | <0.01 |
Ambulatory Group | Non-Ambulatory Group | p-Value | φ | |
---|---|---|---|---|
Air stacking possible | 11 | 1 | <0.01 | −0.874 |
Air stacking impossible | 0 | 5 | ||
MPT (sec) | 20.0 (17.3–21.0) | 13.1 (10.2–17.3) | <0.05 | - |
Ambulatory Group | Non-Ambulatory Group | p-Value | |
---|---|---|---|
Assessment Scale | |||
UMSARS Parts 2–6 | 0 (0–1.5) | 2 (2–2) | <0.05 |
UMSARS Parts 2–11, 12, 13, and 14 | 7 (5–8.5) | 13 (12.3–13.8) | <0.01 |
MDS-UPDRS Parts 3–3 | 0 (0–4) | 12.5 (10.5–14.5) | <0.01 |
MDS-UPDRS Parts 3–9, 10, 12, and 13 | 7 (5.5–9.5) | 15 (15–15) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asakawa, T.; Ogino, M.; Tominaga, N.; Ozaki, N.; Kubo, J.; Kakuda, W. Deterioration of Cough, Respiratory, and Vocal Cord Functions in Patients with Multiple System Atrophy. Neurol. Int. 2023, 15, 1227-1237. https://doi.org/10.3390/neurolint15040077
Asakawa T, Ogino M, Tominaga N, Ozaki N, Kubo J, Kakuda W. Deterioration of Cough, Respiratory, and Vocal Cord Functions in Patients with Multiple System Atrophy. Neurology International. 2023; 15(4):1227-1237. https://doi.org/10.3390/neurolint15040077
Chicago/Turabian StyleAsakawa, Takashi, Mieko Ogino, Naomi Tominaga, Naoto Ozaki, Jin Kubo, and Wataru Kakuda. 2023. "Deterioration of Cough, Respiratory, and Vocal Cord Functions in Patients with Multiple System Atrophy" Neurology International 15, no. 4: 1227-1237. https://doi.org/10.3390/neurolint15040077
APA StyleAsakawa, T., Ogino, M., Tominaga, N., Ozaki, N., Kubo, J., & Kakuda, W. (2023). Deterioration of Cough, Respiratory, and Vocal Cord Functions in Patients with Multiple System Atrophy. Neurology International, 15(4), 1227-1237. https://doi.org/10.3390/neurolint15040077