Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Questionnaire
2.3. MG Outcomes
2.4. Statistical Analysis
3. Results
Impact of COVID-19 in MG Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagappa, M.; Mahadevan, A.; Gangadhar, Y.; Patil, S.A.; Bokolia, S.; Bindu, P.S.; Sinha, S.; Taly, A.B. Autoantibodies in acquired myasthenia gravis: Clinical phenotype and immunological correlation. Acta Neurol. Scand. 2019, 139, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Alanazy, M.H. Clinical features and outcomes of patients with myasthenia gravis. Neurosciences 2019, 24, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Benatar, M.; Sanders, D.B.; Burns, T.M.; Cutter, G.R.; Guptill, J.T.; Baggi, F.; Kaminski, H.J.; Mantegazza, R.; Meriggioli, M.N.; Quan, J.; et al. Recommendations for myasthenia gravis clinical trials. Muscle Nerve 2012, 45, 909–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, G.; Mathis, S.; Friedman, D.; Salort-Campana, E.; Tard, C.; Bouhour, F.; Magot, A.; Annane, D.; Clair, B.; Le Masson, G.; et al. Impact of Coronavirus Disease 2019 in a French Cohort of Myasthenia Gravis. Neurology 2021, 96, e2109–e2120. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, S.; Guptill, J.T.; Jacob, S.; Li, Y.; Farrugia, M.E.; Guidon, A.C.; Tavee, J.O.; Kaminski, H.; Howard, J.F.; Cutter, G.; et al. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol. 2020, 19, 970–971. [Google Scholar] [CrossRef]
- Galassi, G.; Marchioni, A. Myasthenia gravis at the crossroad of COVID-19: Focus on immunological and respiratory interplay. Acta Neurol. Belg. 2021, 121, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Battaglia, G.; Giustino, V.; Gagliardo, A.; D’Aleo, M.; Giannini, O.; Palma, A.; Brighina, F. Significant reduction of physical activity in patients with neuromuscular disease during COVID-19 pandemic: The long-term consequences of quarantine. J. Neurol. 2020, 268, 20–26. [Google Scholar] [CrossRef]
- Costamagna, G.; Abati, E.; Bresolin, N.; Comi, G.P.; Corti, S. Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. J. Neurol. 2021, 268, 1580–1591. [Google Scholar] [CrossRef]
- Varan, O.; Kucuk, H.; Tufan, A. Myasthenia gravis due to hydroxychloroquine. Reumatismo 2015, 67, 125. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Ghosh, R. Does the virus or the doctor promote myasthenic crises in COVID-19 patients with myasthenia? J. Clin. Anesth. 2021, 70, 110166. [Google Scholar] [CrossRef]
- Octaviana, F.; Yugo, H.; Safri, A.; Indrawati, L.; Wiratman, W.; Ayuningtyas, T.; Hakim, M. Case series: COVID-19 in patients with mild to moderate myasthenia gravis in a National Referral Hospital in Indonesia. eNeurologicalSci 2021, 23, 100332. [Google Scholar] [CrossRef]
- Solé, G.; Salort-Campana, E.; Pereon, Y.; Stojkovic, T.; Wahbi, K.; Cintas, P.; Adams, D.; Laforet, P.; Tiffreau, V.; Desguerre, I.; et al. Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev. Neurol. 2020, 176, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Lo Sasso, B.; Giglio, R.V.; Vidali, M.; Scazzone, C.; Bivona, G.; Gambino, C.M.; Maria, C.A.; Luisa, A.; Marcello, C. Evaluation of Anti-SARS-CoV-2 S-RBD IgG Antibodies after COVID-19 mRNA BNT162b2 Vaccine. Diagnostics 2021, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- Živković, S.A.; Gruener, G.; Narayanaswami, P.; Arnold, M.L.; Del Toro, D.R.; Desai, U.G.; Gleveckas-Martens, N.G.; Gruener, G.; Jones, L.K.; Kassardjian, C.D.; et al. Doctor—Should I get the COVID-19 vaccine? Infection and immunization in individuals with neuromuscular disorders. Muscle Nerve 2021, 63, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef]
- Watad, A.; De Marco, G.; Mahajna, H.; Druyan, A.; Eltity, M.; Hijazi, N.; Haddad, A.; Elias, M.; Zisman, D.; Naffaa, M.E.; et al. Immune-mediated disease flares or new-onset disease in 27 subjects following mrna/dna SARS-CoV-2 vaccination. Vaccines 2021, 9, 435. [Google Scholar] [CrossRef]
- Wucherpfennig, K.W. Mechanisms for the induction of autoimmunity by infectious agents. J. Clin. Investig. 2001, 108, 1097–1104. [Google Scholar] [CrossRef]
- Torres-Aguilar, H.; Sosa-Luis, S.A.; Aguilar-Ruiz, S.R. Infections as triggers of flares in systemic autoimmune diseases: Novel innate immunity mechanisms. Curr. Opin. Rheumatol. 2019, 31, 525–531. [Google Scholar] [CrossRef]
- Pellegrino, P.; Clementi, E.; Radice, S. On vaccine’s adjuvants and autoimmunity: Current evidence and future perspectives. Autoimmun. Rev. 2015, 14, 880–888. [Google Scholar] [CrossRef]
- Gherardi, R.K.; Aouizerate, J.; Cadusseau, J.; Yara, S.; Authier, F.J. Aluminum adjuvants of vaccines injected into the muscle: Normal fate, pathology and associated disease. Morphologie 2016, 100, 85–94. [Google Scholar] [CrossRef]
- Vera-Lastra, O.; Medina, G.; Cruz-Dominguez, M.D.P.; Jara, L.J.; Shoenfeld, Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): Clinical and immunological spectrum. Expert Rev. Clin. Immunol. 2013, 9, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Krug, A. Nucleic acid recognition receptors in autoimmunity. Handb. Exp. Pharmacol. 2008, 183, 129–151. [Google Scholar] [CrossRef]
- Teijaro, J.R.; Farber, D.L. COVID-19 vaccines: Modes of immune activation and future challenges. Nat. Rev. Immunol. 2021, 21, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Tatematsu, M.; Funami, K.; Seya, T.; Matsumoto, M. Extracellular RNA Sensing by Pattern Recognition Receptors. J. Innate Immun. 2018, 10, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Rodero, M.P.; Crow, Y.J. Type I interferon-mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. J. Exp. Med. 2016, 213, 2527–2538. [Google Scholar] [CrossRef]
- El-Gabalawy, H.; Guenther, L.C.; Bernstein, C.N. Epidemiology of immune-mediated inflammatory diseases: Incidence, prevalence, natural history, and comorbidities. J. Rheumatol. Suppl. 2010, 85, 2–10. [Google Scholar] [CrossRef]
- Evoli, A.; Antonini, G.; Antozzi, C.; DiMuzio, A.; Habetswallner, F.; Iani, C.; Inghilleri, M.; Liguori, R.; Mantegazza, R.; Massa, R.; et al. Italian recommendations for the diagnosis and treatment of myasthenia gravis. Neurol. Sci. 2019, 40, 1111–1124. [Google Scholar] [CrossRef]
- Andersen, J.B.; Heldal, A.T.; Engeland, A.; Gilhus, N.E. Myasthenia gravis epidemiology in a national cohort; combining multiple disease registries. Acta Neurol. Scand. 2014, 129, 26–31. [Google Scholar] [CrossRef]
- Chandler, R.E. Optimizing safety surveillance for COVID-19 vaccines. Nat. Rev. Immunol. 2020, 20, 451–452. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Herbelin, L.; Nations, S.P.; Foster, B.; Bryan, W.W.; Barohn, R.J. Myasthenia gravis activities of daily living profile. Neurology 1999, 52, 1487–1489. [Google Scholar] [CrossRef]
- Muppidi, S.; Wolfe, G.I.; Conaway, M.; Burns, T.M. MG-ADL: Still a relevant outcome measure. Muscle Nerve 2011, 44, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Raggi, A.; Antozzi, C.; Baggi, F.; Leonardi, M.; Maggi, L.; Mantegazza, R. Validity, reliability, and sensitivity to change of the myasthenia gravis activities of daily living profile in a sample of Italian myasthenic patients. Neurol. Sci. 2017, 38, 1927–1931. [Google Scholar] [CrossRef] [PubMed]
- Businaro, P.; Vaghi, G.; Marchioni, E.; Diamanti, L.; Arceri, S.; Bini, P.; Colombo, E.; Cosentino, G.; Alfonsi, E.; Costa, A.; et al. COVID-19 in patients with myasthenia gravis: Epidemiology and disease course. Muscle Nerve 2021, 64, 206–211. [Google Scholar] [CrossRef]
- Rzepiński, Ł.; Zawadka-Kunikowska, M. COVID-19 pandemic year in a sample of Polish myasthenia gravis patients: An observational study. Neurol. Neurochir. Pol. 2021, 56, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Slama, M.C.C.; Kaku, M.; Ong, C.; Cervantes-Arslanian, A.M.; Zhou, L.; David, W.S.; Guidon, A.C. COVID-19 in patients with myasthenia gravis. Muscle Nerve 2020, 62, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Camelo-Filho, A.E.; Silva, A.M.S.; Estephan, E.P.; Zambon, A.A.; Mendonça, R.H.; Souza, P.V.; Pinto, W.B.V.R.; Oliveira, A.S.B.; Dangoni-Filho, I.; Pouza, A.F.P.; et al. Myasthenia Gravis and COVID-19: Clinical Characteristics and Outcomes. Front. Neurol. 2020, 11, 1053. [Google Scholar] [CrossRef]
- Županić, S.; Perić Šitum, M.; Majdak, M.; Karakaš, M.; Bašić, S.; Sporiš, D. Case series of COVID-19 in patients with myasthenia gravis: A single institution experience. Acta Neurol. Belg. 2021, 121, 1039–1044. [Google Scholar] [CrossRef]
- Rein, N.; Haham, N.; Orenbuch-Harroch, E.; Romain, M.; Argov, Z.; Vaknin-Dembinsky, A.; Gotkine, M. Description of 3 patients with myasthenia gravis and COVID-19. J. Neurol. Sci. 2020, 417, 117053. [Google Scholar] [CrossRef]
- Saied, Z.; Rachdi, A.; Thamlaoui, S.; Nabli, F.; Jeridi, C.; Baffoun, N.; Kaddour, C.; Belal, S.; Sassi, S. Ben Myasthenia gravis and COVID-19: A case series and comparison with literature. Acta Neurol. Scand. 2021, 144, 334–340. [Google Scholar] [CrossRef]
- de Seze, J.; Lebrun-Frenay, C. COVID-19, the pandemic war: Implication for neurologists. Rev. Neurol. 2020, 176, 223–224. [Google Scholar] [CrossRef]
- Kalita, J.; Tripathi, A.; Dongre, N.; Misra, U.K. Impact of COVID-19 pandemic and lockdown in a cohort of myasthenia gravis patients in India. Clin. Neurol. Neurosurg. 2021, 202, 106488. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, D.; Casagrande, S.; Iodice, F.; Orlando, B.; Trojsi, F.; Cirillo, G.; Clerico, M.; Bozzali, M.; Leocani, L.; Abbadessa, G.; et al. Myasthenia gravis and telemedicine: A lesson from COVID-19 pandemic. Neurol. Sci. 2021, 42, 4889–4892. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Alnajjar, S.; Barnett, C.; Vijayan, J.; Katzberg, H.; Fathi, D.; Alcantara, M.; Bril, V. Telephone consultation for myasthenia gravis care during the COVID-19 pandemic: Assessment of a novel virtual myasthenia gravis index. Muscle Nerve 2021, 63, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
Pt | Sex | AB | MGADL Pre–Post | ΔMGADL | Δ Item MGADL | Therapy Variation * | Comorbidity |
---|---|---|---|---|---|---|---|
1 | M | MuSK | 5–7 | 2 | +1 arise from a chair +1 double vision | IVIg | OSAS |
2 | F | AChR | 2–4 | 2 | +1 double vision +1 swallowing | IVIg | Cataract |
3 | F | AChR | 1–6 | 5 | +2 eyelid droop +1 breathing +2 arise from a chair | No CTS, refuse IS | Vertebral osteoporosis |
4 | M | AChR | 0–3 | 3 | +2 brush teeth or comb hair +1 eyelid droop | Obesity, Radiculopathy | |
5 | F | / | 3–6 | 3 | +2 brush teeth or comb hair +1 talking | ||
6 | M | / | 2–4 | 2 | +1 eyelid droop +1 breathing | ||
7 | F | AChR | 9–11 | 2 | +1 chewing +1 breathing | IVIg | |
8 | F | AChR | 3–6 | 3 | +1 swallowing +2 brush teeth or comb hair | CTS reduction | |
9 | F | AChR | 8–13 | 5 | +2 swallowing +2 chewing +1 breathing | COPD | |
10 | M | AChR | 1–3 | 2 | +2 arise from a chair | ||
11 | F | AChR | 5–8 | 3 | +2 arise from a chair +1 brush teeth or comb hair | ||
12 | F | AChR | 0–7 | 7 | +2 swallowing +2 brush teeth or comb hair +3 eyelid droop | ||
13 | F | / | 5–7 | 2 | +1 arise from a chair +1 brush teeth or comb hair | CTS reduction | |
14 | F | / | 1–3 | 2 | +1 breathing +1 eyelid drop |
Pt | Sex | Antibody Specificity | Comorbidity | MGADL before COVID-19 | MGADL after COVID-19 | Outcome |
---|---|---|---|---|---|---|
1 | M | AChR | Diabetes | 5 | Died | |
2 | M | AChR | Diabetes | 1 | Died | |
3 | F | AChR | Diabetes, chronic renal failure, hypertension | 6 | Died | |
4 | M | AChR | 4 | 11 | Recovered after NIV | |
5 | F | AChR | Diabetes | 1 | Died | |
6 | M | MuSK, AChR | 0 | 0 | Asymptomatic | |
7 | F | AChR | 8 | 8 | Asymptomatic | |
8 | M | AChR | // | 4 | 4 | Asymptomatic |
9 | F | AChR | VHL, vertebral hemangioma, migraine, hyperinsulinism, factor XII deficiency | 5 | 5 | Recovered after flu-like symptoms (fever, cough) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupica, A.; Di Stefano, V.; Iacono, S.; Pignolo, A.; Quartana, M.; Gagliardo, A.; Fierro, B.; Brighina, F. Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort. Neurol. Int. 2022, 14, 406-416. https://doi.org/10.3390/neurolint14020033
Lupica A, Di Stefano V, Iacono S, Pignolo A, Quartana M, Gagliardo A, Fierro B, Brighina F. Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort. Neurology International. 2022; 14(2):406-416. https://doi.org/10.3390/neurolint14020033
Chicago/Turabian StyleLupica, Antonino, Vincenzo Di Stefano, Salvatore Iacono, Antonia Pignolo, Martina Quartana, Andrea Gagliardo, Brigida Fierro, and Filippo Brighina. 2022. "Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort" Neurology International 14, no. 2: 406-416. https://doi.org/10.3390/neurolint14020033
APA StyleLupica, A., Di Stefano, V., Iacono, S., Pignolo, A., Quartana, M., Gagliardo, A., Fierro, B., & Brighina, F. (2022). Impact of COVID-19 in AChR Myasthenia Gravis and the Safety of Vaccines: Data from an Italian Cohort. Neurology International, 14(2), 406-416. https://doi.org/10.3390/neurolint14020033