Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach
Abstract
:1. Introduction
2. Materials and Methods
- -
- COVID-19 mortality and risk factors for severe COVID-19 in pwMS;
- -
- vaccine response (humoral and cellular) in pwMS;
- -
- breakthrough infection in pwMS;
- -
- the effect of SARS-CoV-2 vaccination on MS.
3. Results
3.1. COVID-19 Mortality
3.2. Severe COVID-19 Risk Factors in pwMS
3.3. Vaccine Response in pwMS
3.4. The Effects of Vaccines on MS
3.5. Breakthrough Infection
3.6. Guidelines
- -
- SARS-CoV-2 vaccination is recommended in all pwMS, as they are very vulnerable patients and should be vaccinated as a priority;
- -
- pwMS treated with injectables, dimethyl-fumarate, teriflunomide, azathioprine, S1P-modulators, natalizumab, cladribine should be vaccinated, whatever their therapy, but should be advised about the possibility of a reduced vaccine efficacy in the presence of lymphopenia;
- -
- pwMS treated with mitoxantrone, cyclophosphamide, ocrelizumab, ofatumumab, rituximab, alemtuzumab should be given DMDs at least 4–6 weeks after the second vaccination and be vaccinated at least three months after the last infusion. With regard to the pandemic phase and disease activity, these time intervals are not mandatory.;
- -
- the humoral response to the vaccination could be weak in pwMS treated with anti-CD20 or S1P-modulators;
- -
- an interval of one month is recommended between an MS relapse and vaccination, as well as between steroid treatment and vaccination;
- -
- vaccination is recommended for caregivers and pwMS relatives;
- -
- an additional vaccine dose at least 28 days after the second dose is recommended in patients with immunodeficiency due to pharmacological treatment (ocrelizumab, rituximab, ofatumumab, S1P-modulators, alemtuzumab, cyclophosphamide, mitoxantrone, hematopoietic stem cell transplantation; cladribine, azathioprine, teriflunomide and dimethyl-fumarate when they induce a lymphopenia with a lymphocyte count of <800 cells/mm3 at vaccination);
- -
- a booster vaccine dose is recommended at least 6 months after the second vaccination in pwMS treated with injectables, natalizumab, teriflunomide and dimethyl-fumarate, in the absence of lymphopenia;
- -
- a fourth booster dose is recommended for those pwMS who were given a third additional vaccination because of drug-induced immunodeficiency.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trapp, B.D.; Peterson, J.; Ransohoff, R.M.; Rudick, R.; Mörk, S.; Bö, L. Axonal Transection in the Lesions of Multiple Sclerosis. NEJM 1998, 338, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Ramagopalan, S.V.; Sadovnick, A.D. Epidemiology of multiple sclerosis. Neurol. Clin. 2011, 29, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple sclerosis. NEJM 2000, 343, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Bivona, G.; Gambino, C.M.; Lo Sasso, B.; Scazzone, C.; Giglio, R.V.; Agnello, L.; Ciaccio, M. Serum Vitamin D as a Biomarker in Autoimmune, Psychiatric and Neurodegenerative Diseases. Diagnostics 2022, 12, 130. [Google Scholar] [CrossRef]
- Torok, N.; Tanaka, M.; Vecsei, L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int. J. Mol. Sci. 2020, 21, 9338. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Tanaka, M.; Vecsei, L. Editorial of Special Issue “Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry”. Biomedicines 2021, 9, 517. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of MacDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Filippi, M.; Preziosa, P.; Banwell, B.L.; Barkhof, F.; Ciccarelli, O.; De Stefano, N.; Geurts, J.J.G.; Paul, F.; Reich, D.S.; Toosy, A.T.; et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: Practical guidelines. Brain 2019, 142, 1858–1875. [Google Scholar] [CrossRef] [Green Version]
- Hauser, S.L.; Cree, B.A.C. Treatment of multiple sclerosis: A review. Am. J. Med. 2020, 133, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Bose, G.; Freedman, M.S. Precision medicine in the multiple sclerosis clinic: Selecting the right patient for the right treatment. Mult. Scler. 2020, 26, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Pastò, L.; Razzolini, L.; Moiola, L.; Martinelli, V.; Annovazzi, P.; Ghezzi, A.; Zaffaroni, M.; Lanzillo, R.; Brescia Morra, V.; et al. Natalizumab treatment and pregnancy in multiple sclerosis: A reappraisal of maternal and infant outcomes after 6 years. Mult. Scler. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vecsei, L. Monitoring the redox status in multiple sclerosis. Biomedicines 2020, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Immovilli, P.; Morelli, N.; Rota, E.; Guidetti, D. COVID-19 mortality and health-care resources: Organization. Med. Iintensiv. 2021, 45, 383–384. [Google Scholar] [CrossRef]
- Sormani, M.P.; Salvetti, M.; Labauge, P.; Schiavetti, I.; Zephir, H.; Carmisciano, L.; Bensa, C.; De Rossi, N.; Pelletier, J.; Cordioli, C.; et al. DMTs and COVID-19 severity in MS: A pooled analysis from Italy and France. Ann. Clin. Transl. Neurol. 2021, 8, 1738–1744. [Google Scholar] [CrossRef]
- Immovilli, P.; Terracciano, C.; Zaino, D.; Marchesi, E.; Morelli, N.; Terlizzi, E.; De Mitri, P.; Vollaro, S.; Magnifico, F.; Colombi, D.; et al. Stroke in COVID-19 patients—A case series from Italy. Int. J. Stroke 2020, 15, 701–702. [Google Scholar] [CrossRef]
- Kempuraj, D.; Selvakumar, G.P.; Ahmed, M.E.; Raikwar, S.P.; Thangavel, R.; Khan, A.; Zaheer, S.A.; Iyer, S.S.; Burton, C.; James, D.; et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist 2020, 26, 402–414. [Google Scholar] [CrossRef]
- Morelli, N.; Rota, E.; Immovilli, P.; Spallazzi, M.; Colombi, D.; Guidetti, D.; Michieletti, E. The Hidden Face of Fear in the COVID-19 Era: The Amygdala Hijack. Eur. Neurol. 2020, 83, 2020–2221. [Google Scholar] [CrossRef]
- Veer, I.M.; Riepenhausen, A.; Zerban, M.; Wackerhagen, C.; Puhlmann, L.M.C.; Engen, H.; Köber, G.; Bögemann, S.A.; Weermeijer, J.; Uściłko, A.; et al. Psyco-social factors associated with mental resilience in the Corona lockdown. Transl. Psychiatry 2021, 11, 67. [Google Scholar] [CrossRef]
- Portaccio, E.; Fonderico, M.; Hemmer, B.; Derfuss, T.; Stankoff, B.; Selmaj, K.; Tintorè, M.; Amato, M.P. Impact of COVID-19 on multiple sclerosis care and management: Results from the European Committee for Treatment and Research in Multiple Sclerosis survey. Mult. Scler. 2022, 28, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Sormani, M.P.; De Rossi, N.; Schiavetti, I.; Carmisciano, L.; Cordioli, C.; Moiola, L.; Radaelli, M.; Immovilli, P.; Capobianco, M.; Trojano, M.; et al. Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Ann. Neurol. 2021, 89, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Louapre, C.; Collongues, N.; Stankoff, B.; Giannesini, C.; Papeix, C.; Bensa, C.; Deschamps, R.; Créange, A.; Wahab, A.; Pelletier, J.; et al. Clinical Characteristics and Outcomes in Patients with Coronavirus Disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020, 77, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Salter, A.; Fox, R.J.; Newsome, S.D.; Halper, J.; Li, D.K.B.; Kanellis, P.; Costello, K.; Bebo, B.; Rammohan, K.; Cutter, G.R.; et al. Outcomes and Risk Factors Associated With SARS-CoV-2 Infection in a North American Registry of Patients with Multiple Sclerosis. JAMA Neurol. 2021, 78, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Schiavetti, I.; Ponzano, M.; Signori, A.; Bovis, F.; Carmisciano, L.; Sormani, M.P. Severe outcomes of COVID-19 among patients with multiple sclerosis under anti-CD-20 therapies: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 57, 103358. [Google Scholar] [CrossRef]
- Apostolidis, S.A.; Kakara, M.; Painter, M.M.; Goel, R.R.; Mathew, D.; Lenzi, K.; Rezk, A.; Patterson, K.R.; Espinoza, D.A.; Kadri, J.C.; et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 2021, 11, 1990–2001. [Google Scholar] [CrossRef]
- Tortorella, C.; Aiello, A.; Gasperini, C.; Agrati, C.; Castilletti, C.; Ruggieri, S.; Meschi, S.; Matusali, G.; Colavita, F.; Farroni, C.; et al. Humoral- and T-Cell-Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients with MS Using Different Disease-Modifying Therapies. Neurology 2022, 98, e541–e554. [Google Scholar] [CrossRef]
- Sormani, M.P.; Schiavetti, I.; Inglese, M.; Carmisciano, L.; Laroni, A.; Lapucci, C.; Visconti, V.; Serrati, C.; Gandoglia, I.; Tassinari, T.; et al. Breakthrough SARS-CoV-2 Infections after COVID-19 mRNA Vaccination in MS Patients on Disease Modifying Therapies. medRxiv, 2021; in press. [Google Scholar] [CrossRef]
- De Backer, D.; Azoulay, E.; Vincent, J.L. Corticosteroids in severe COVID-19: A critical view of the evidence. Crit. Care 2020, 24, 627. [Google Scholar] [CrossRef]
- Immovilli, P.; Morelli, N.; Antonucci, E.; Radaelli, G.; Barbera, M.; Guidetti, D. COVID-19 mortality and ICU admission: The Italian experience. Crit. Care 2020, 24, 228. [Google Scholar] [CrossRef]
- Sormani, M.P.; Schiavetti, I.; Carmisciano, L.; Cordioli, C.; Filippi, M.; Radaelli, M.; Immovilli, P.; Capobianco, M.; De Rossi, N.; Brichetto, G.; et al. COVID-19 Severity in Multiple Sclerosis: Putting Data into Context. Neurol. Neuroimmunol. Neuroinflamm. 2021, 9, e1105. [Google Scholar] [CrossRef]
- Prosperini, L.; Tortorella, C.; Haggiag, S.; Ruggieri, S.; Galgani, S.; Gasperini, C. Increased risk of death from COVID-19 in multiple sclerosis: A pooled analysis of observational studies. J. Neurol. 2021; in press. [Google Scholar] [CrossRef]
- Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Magalashvili, D.; Sonis, P.; Dolev, M.; Menascu, S.; Flechter, S.; Falb, R.; et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211020082. [Google Scholar] [CrossRef] [PubMed]
- Sormani, M.P.; Inglese, M.; Schiavetti, I.; Carmisciano, L.; Laroni, A.; Lapucci, C.; Da Rin, G.; Serrati, C.; Gandoglia, I.; Tassinari, T.; et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. EBioMedicine 2021, 72, 103581. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, A.; Arrambide, G.; Tagliani, P.; Cárdenas-Robledo, S.; Otero-Romero, S.; Esperalba, J.; Fernandez-Naval, C.; Trocoli Campuzano, J.; Martínez Gallo, M.; Castillo, M.; et al. Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients with Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1143. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.A.K.; Quarraisha, A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar]
- Bsteh, G.; Hegen, H.; Traxler, G.; Krajnc, N.; Leutmezer, F.; Di Pauli, F.; Kornek, B.; Rommer, P.; Zulehner, G.; Dürauer, S.; et al. Comparing humoral immune response to SARS-CoV2 vaccines in people with multiple sclerosis and healthy controls: An Austrian prospective multicenter cohort study. Eur. J. Neurol. 2022; in press. [Google Scholar] [CrossRef]
- Di Filippo, M.; Cordioli, C.; Malucchi, S.; Annovazzi, P.; Cavalla, P.; Torri Clerici, V.; Ragonese, P.; Nociti, V.; Radaelli, M.; Laroni, A.; et al. mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2021; in press. [Google Scholar] [CrossRef]
- Achiron, A.; Dolev, M.; Menascu, S.; Zohar, D.N.; Dreyer-Alster, S.; Miron, S.; Shirbint, E.; Magalashvili, D.; Flechter, S.; Givon, U.; et al. COVID-19 vaccination in patients with multiple sclerosis: What we have learnt by February 2021. Mult. Scler. 2021, 6, 864–870. [Google Scholar] [CrossRef]
- Nistri, R.; Barbuti, E.; Rinaldi, V.; Tufano, L.; Pozzilli, V.; Ianniello, A.; Marinelli, F.; De Luca, G.; Prosperini, L.; Tomassini, V.; et al. Case Report: Multiple Sclerosis Relapses After Vaccination Against SARS-CoV2: A Series of Clinical Cases. Front. Neurol. 2021, 12, 765954. [Google Scholar] [CrossRef]
- Pignolo, A.; Aprile, M.; Gagliardo, C.; Giammanco, G.M.; D’Amelio, M.; Aridon, P.; La Tona, G.; Salemi, G.; Ragonese, P. Clinical Onset and Multiple Sclerosis Relapse after SARS-CoV-2 Infection. Neurol. Int. 2021, 13, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Januel, E.; De Seze, J.; Vermersch, P.; Maillart, E.; Bourre, B.; Pique, J.; Moisset, X.; Bensa, C.; Maarouf, A.; Pelletier, J.; et al. Post-vaccine COVID-19 in patients with multiple sclerosis or neuromyelitis optica. Mult. Scler. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- The European Medical Agency Website. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/covid-19-latest-updates (accessed on 19 March 2022).
- The Italian Ministry of Health Website. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2021&codLeg=82776&parte=1%20&serie=null (accessed on 19 March 2022).
- The Associazione Italiana Sclerosi Multipla (AISM) Website. Available online: https://www.aism.it/sites/default/files/AggiornamentoRaccomandazioniSMIVDose.pdf (accessed on 19 March 2022).
- Plavina, T.; Subramanyam, M.; Bloomgren, G.; Richman, S.; Pace, A.; Lee, S.; Schlain, B.; Campagnolo, D.; Belachew, S.; Ticho, B. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann. Neurol. 2014, 76, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Ellena, G.; Battaglia, S.; Làdavas, E. The spatial effect of fearful faces in the autonomic response. Exp. Brain Res. 2020, 238, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Candini, M.; Battaglia, S.; Benassi, M.; di Pellegrino, G.; Frassinetti, F. The physiological correlates of interpersonal space. Sci. Rep. 2021, 11, 2611. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Tortorella, C.; Haggiag, S.; Ruggieri, S.; Galgani, S.; Gasperini, C. Determinants of COVID-19-related lethality in multiple sclerosis: A meta-regression of observational studies. J. Neurol. 2022, 269, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
Severe COVID-19 Risk Factors |
---|
Older age Male gender EDSS score of >3 Cardiac comorbidities Obesity Progressive MS course Administration of high doses of methylprednisolone in the month before infection |
Anti-CD20 therapy |
DMD | Severe COVID-19 Risk OR (95% IC) | Effects on Vaccine Response |
---|---|---|
Interferons | 0.42 (0.18–0.99) | n.s. § |
Glatiramer acetate | n.s. § | n.s. § |
Teriflunomide | Significant # | n.s. § |
Dimethyl fumarate | n.s. § | n.s. § |
S1P modulators | n.s. § | Reduced humoral and cellular response |
Cladribine | n.s. § | n.s. § |
Anti-CD20 | 2.05 [1.39–3.02] | Reduced humoral response |
Natalizumab | n.s. § | n.s. § |
Alemtuzumab | n.s. § | n.s. § |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Immovilli, P.; Morelli, N.; Terracciano, C.; Rota, E.; Marchesi, E.; Vollaro, S.; De Mitri, P.; Zaino, D.; Bazzurri, V.; Guidetti, D. Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach. Neurol. Int. 2022, 14, 368-377. https://doi.org/10.3390/neurolint14020030
Immovilli P, Morelli N, Terracciano C, Rota E, Marchesi E, Vollaro S, De Mitri P, Zaino D, Bazzurri V, Guidetti D. Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach. Neurology International. 2022; 14(2):368-377. https://doi.org/10.3390/neurolint14020030
Chicago/Turabian StyleImmovilli, Paolo, Nicola Morelli, Chiara Terracciano, Eugenia Rota, Elena Marchesi, Stefano Vollaro, Paola De Mitri, Domenica Zaino, Veronica Bazzurri, and Donata Guidetti. 2022. "Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach" Neurology International 14, no. 2: 368-377. https://doi.org/10.3390/neurolint14020030
APA StyleImmovilli, P., Morelli, N., Terracciano, C., Rota, E., Marchesi, E., Vollaro, S., De Mitri, P., Zaino, D., Bazzurri, V., & Guidetti, D. (2022). Multiple Sclerosis Treatment in the COVID-19 Era: A Risk-Benefit Approach. Neurology International, 14(2), 368-377. https://doi.org/10.3390/neurolint14020030