Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelhak, A.; Weber, M.S.; Tumani, H. Primary Progressive Multiple Sclerosis: Putting Together the Puzzle. Front. Neurol. 2017, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Nourbakhsh, B.; Mowry, E.M. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum 2019, 25, 596–610. [Google Scholar] [CrossRef]
- Machado-Santos, J.; Saji, E.; Troscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.; Lassmann, H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain J. Neurol. 2018, 141, 2066–2082. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, N.; Hutchinson, M.; McGuigan, C.; Chataway, J. 2017 McDonald diagnostic criteria: A review of the evidence. Mult. Scler. Relat. Disord. 2018, 24, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadis, N.; van Pesch, V. A basic overview of multiple sclerosis immunopathology. Eur. J. Neurol. 2015, 22, 3–13. [Google Scholar] [CrossRef]
- Nicholas, R.; Rashid, W. Multiple sclerosis. Am. Fam. Physician 2013, 87, 712–714. [Google Scholar]
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; et al. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef] [Green Version]
- van der Mei, I.; Lucas, R.M.; Taylor, B.V.; Valery, P.C.; Dwyer, T.; Kilpatrick, T.J.; Pender, M.P.; Williams, D.; Chapman, C.; Otahal, P.; et al. Population attributable fractions and joint effects of key risk factors for multiple sclerosis. Mult. Scler. 2016, 22, 461–469. [Google Scholar] [CrossRef]
- Dardiotis, E.; Nousia, A.; Siokas, V.; Tsouris, Z.; Andravizou, A.; Mentis, A.A.; Florou, D.; Messinis, L.; Nasios, G. Efficacy of computer-based cognitive training in neuropsychological performance of patients with multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2018, 20, 58–66. [Google Scholar] [CrossRef]
- Hadjigeorgiou, G.M.; Kountra, P.M.; Koutsis, G.; Tsimourtou, V.; Siokas, V.; Dardioti, M.; Rikos, D.; Marogianni, C.; Aloizou, A.M.; Karadima, G.; et al. Replication study of GWAS risk loci in Greek multiple sclerosis patients. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2019, 40, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2019, 178, 262. [CrossRef] [PubMed] [Green Version]
- Dardiotis, E.; Panayiotou, E.; Siokas, V.; Aloizou, A.M.; Christodoulou, K.; Hadjisavvas, A.; Pantzaris, M.; Grigoriadis, N.; Hadjigeorgiou, G.M.; Kyriakides, T. Gene variants of adhesion molecules predispose to MS: A case-control study. Neurol. Genet. 2019, 5, e304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souren, N.Y.; Gerdes, L.A.; Lutsik, P.; Gasparoni, G.; Beltrán, E.; Salhab, A.; Kümpfel, T.; Weichenhan, D.; Plass, C.; Hohlfeld, R.; et al. DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat. Commun. 2019, 10, 2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Sokratous, M.; Dardiotis, E.; Bellou, E.; Tsouris, Z.; Michalopoulou, A.; Dardioti, M.; Siokas, V.; Rikos, D.; Tsatsakis, A.; Kovatsi, L.; et al. CpG Island Methylation Patterns in Relapsing-Remitting Multiple Sclerosis. J. Mol. Neurosci. MN 2018, 64, 478–484. [Google Scholar] [CrossRef]
- Siokas, V.; Tsouris, Z.; Aloizou, A.M.; Bakirtzis, C.; Liampas, I.; Koutsis, G.; Anagnostouli, M.; Bogdanos, D.P.; Grigoriadis, N.; Hadjigeorgiou, G.M.; et al. Multiple Sclerosis: Shall We Target CD33? Genes 2020, 11, 1334. [Google Scholar] [CrossRef]
- Sokratous, M.; Dardiotis, E.; Tsouris, Z.; Bellou, E.; Michalopoulou, A.; Siokas, V.; Arseniou, S.; Stamati, T.; Tsivgoulis, G.; Bogdanos, D.; et al. Deciphering the role of DNA methylation in multiple sclerosis: Emerging issues. Auto-Immun. Highlights 2016, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Mentis, A.A.; Dardiotis, E.; Grigoriadis, N.; Petinaki, E.; Hadjigeorgiou, G.M. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol. Scand. 2017, 136, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.C.; van der Mei, I.A.; Munger, K.L.; Ponsonby, A.; Dickinson, J.; Dwyer, T.; Sundström, P.; Ascherio, A. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1*1501 on multiple sclerosis risk. Neurology 2010, 74, 1365–1371. [Google Scholar] [CrossRef] [Green Version]
- Ntellas, P.; Dardiotis, E.; Sevdali, E.; Siokas, V.; Aloizou, A.M.; Tsinti, G.; Germenis, A.E.; Hadjigeorgiou, G.M.; Eibel, H.; Speletas, M. TNFRSF13C/BAFFR P21R and H159Y polymorphisms in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 37, 101422. [Google Scholar] [CrossRef]
- Munger, K.L.; Bentzen, J.; Laursen, B.; Stenager, E.; Koch-Henriksen, N.; Sorensen, T.I.; Baker, J.L. Childhood body mass index and multiple sclerosis risk: A long-term cohort study. Mult. Scler. 2013, 19, 1323–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, E.; Levasseur, V.; Cross, A.H.; Piccio, L. An overview of the current state of evidence for the role of specific diets in multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 36, 101393. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Sand, I.K.; Senders, A.; Spain, R.; Giesser, B.; Sullivan, P.; Baer, D.J.; LaRocca, N.; Zackowski, K.; Mowry, E.M. Conducting dietary intervention trials in people with multiple sclerosis: Lessons learned and a path forward. Mult. Scler. Relat. Disord. 2020, 37. [Google Scholar] [CrossRef] [PubMed]
- Katz Sand, I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018, 7, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Dardiotis, E.; Tsouris, Z.; Aslanidou, P.; Aloizou, A.M.; Sokratous, M.; Provatas, A.; Siokas, V.; Deretzi, G.; Hadjigeorgiou, G.M. Body mass index in patients with Multiple Sclerosis: A meta-analysis. Neurol. Res. 2019, 41, 836–846. [Google Scholar] [CrossRef]
- Hedstrom, A.K.; Olsson, T.; Alfredsson, L. Body mass index during adolescence, rather than childhood, is critical in determining MS risk. Mult. Scler. 2016, 22, 878–883. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- Dardiotis, E.; Siokas, V.; Sokratous, M.; Tsouris, Z.; Aloizou, A.M.; Florou, D.; Dastamani, M.; Mentis, A.A.; Brotis, A.G. Body mass index and survival from amyotrophic lateral sclerosis: A meta-analysis. Neurol. Clin. Pract. 2018, 8, 437–444. [Google Scholar] [CrossRef]
- Myers, R.H.; Sax, D.S.; Koroshetz, W.J.; Mastromauro, C.; Cupples, L.A.; Kiely, D.K.; Pettengill, F.K.; Bird, E.D. Factors associated with slow progression in Huntington’s disease. Arch. Neurol. 1991, 48, 800–804. [Google Scholar] [CrossRef]
- Wills, A.M.; Perez, A.; Wang, J.; Su, X.; Morgan, J.; Rajan, S.S.; Leehey, M.A.; Pontone, G.M.; Chou, K.L.; Umeh, C.; et al. Association Between Change in Body Mass Index, Unified Parkinson’s Disease Rating Scale Scores, and Survival Among Persons With Parkinson Disease: Secondary Analysis of Longitudinal Data From NINDS Exploratory Trials in Parkinson Disease Long-term Study 1. JAMA Neurol. 2016, 73, 321–328. [Google Scholar] [CrossRef]
- Kountouras, J.; Boziki, M.; Polyzos, S.A.; Katsinelos, P.; Gavalas, E.; Zeglinas, C.; Tzivras, D.; Romiopoulos, I.; Giorgakis, N.; Anastasiadou, K.; et al. The Emerging Role of Helicobacter Pylori-Induced Metabolic Gastrointestinal Dysmotility and Neurodegeneration. Curr. Mol. Med. 2017, 17, 389–404. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Kountouras, J.; Doulberis, M.; Polyzos, S.A.; Katsinelos, T.; Vardaka, E.; Kountouras, C.; Arapoglou, S.; Exadaktylos, A.K.; Deretzi, G.; Tsolaki, M.; et al. Impact of Helicobacter pylori and/or Helicobacter pylori-related metabolic syndrome on incidence of all-cause and Alzheimer’s dementia. Alzheimers Dement. J. Alzheimers Assoc. 2019, 15, 723–725. [Google Scholar] [CrossRef]
- Fahmi, R.M.; El Ebeary, M.E.S.; Abd Alrasheed, E.M.; Elkhatib, T.H.M. Metabolic syndrome components and disease disability in egyptian multiple sclerosis patients. Mult. Scler. Relat. Disord. 2020, 44. [Google Scholar] [CrossRef] [PubMed]
- Negrotto, L.; Farez, M.F.; Correale, J. Immunologic Effects of Metformin and Pioglitazone Treatment on Metabolic Syndrome and Multiple Sclerosis. JAMA Neurol. 2016, 73, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Timshel, P.N.; Thompson, J.J.; Pers, T.H. Genetic mapping of etiologic brain cell types for obesity. eLife 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 2005, 58, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Khadri, F.A.; Gopinath, V.K.; Hector, M.P.; Davenport, E.S. Impact of Demographic Factors, Obesity, and Oral Health Status on Self-esteem among School-going Children in United Arab Emirates: A Cross-sectional Study. J. Int. Soc. Prev. Community Dent. 2020, 10, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Markianos, M.; Evangelopoulos, M.E.; Koutsis, G.; Davaki, P.; Sfagos, C. Body Mass Index in Multiple Sclerosis: Associations with CSF Neurotransmitter Metabolite Levels. ISRN Neurol. 2013, 2013, 981070. [Google Scholar] [CrossRef] [PubMed]
- Nortvedt, M.W.; Riise, T.; Maeland, J.G. Multiple sclerosis and lifestyle factors: The Hordaland Health Study. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2005, 26, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, K.C.; Salter, A.; Tyry, T.; Fox, R.J.; Cutter, G.; Marrie, R.A. Measures of general and abdominal obesity and disability severity in a large population of people with multiple sclerosis. Mult. Scler. 2020, 26, 976–986. [Google Scholar] [CrossRef]
- Versini, M.; Jeandel, P.Y.; Rosenthal, E.; Shoenfeld, Y. Obesity in autoimmune diseases: Not a passive bystander. Autoimmun. Rev. 2014, 13, 981–1000. [Google Scholar] [CrossRef]
- Wesnes, K.; Riise, T.; Casetta, I.; Drulovic, J.; Granieri, E.; Holmoy, T.; Kampman, M.T.; Landtblom, A.M.; Lauer, K.; Lossius, A.; et al. Body size and the risk of multiple sclerosis in Norway and Italy: The EnvIMS study. Mult. Scler. 2015, 21, 388–395. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, E.; Zanghì, A.; Serra, A.; Murabito, P.; Zappia, M.; Patti, F.; Cocuzza, S. Management of dysphagia in multiple sclerosis: Current best practice. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Patten, S.B.; Marrie, R.A.; Carta, M.G. Depression in multiple sclerosis. Int. Rev. Psychiatry 2017, 29, 463–472. [Google Scholar] [CrossRef] [PubMed]
- McMinn, J.; Steel, C.; Bowman, A. Investigation and management of unintentional weight loss in older adults. BMJ (Clin. Res. Ed.) 2011, 342, d1732. [Google Scholar] [CrossRef]
- Mokry, L.E.; Ross, S.; Timpson, N.J.; Sawcer, S.; Davey Smith, G.; Richards, J.B. Obesity and Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med. 2016, 13, e1002053. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, F.; Jessri, M.; Behrooz, M.; Mirghotbi, M.; Rashidkhani, B. Mediterranean diet adherence and risk of multiple sclerosis: A case-control study. Asia Pac. J. Clin. Nutr. 2016, 25, 377–384. [Google Scholar] [CrossRef]
- Farez, M.F.; Fiol, M.P.; Gaitan, M.I.; Quintana, F.J.; Correale, J. Sodium intake is associated with increased disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Riccio, P.; Rossano, R.; Larocca, M.; Trotta, V.; Mennella, I.; Vitaglione, P.; Ettorre, M.; Graverini, A.; De Santis, A.; Di Monte, E.; et al. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study. Exp. Biol. Med. 2016, 241, 620–635. [Google Scholar] [CrossRef] [Green Version]
- Swank, R.L.; Goodwin, J.W. How saturated fats may be a causative factor in multiple sclerosis and other diseases. Nutrition 2003, 19, 478. [Google Scholar] [CrossRef]
- Phillips, M.C.L. Fasting as a Therapy in Neurological Disease. Nutrients 2019, 11, 2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langley, M.R.; Yoon, H.; Kim, H.N.; Choi, C.I.; Simon, W.; Kleppe, L.; Lanza, I.R.; LeBrasseur, N.K.; Matveyenko, A.; Scarisbrick, I.A. High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165630. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Seo, Y.G.; Paek, Y.J.; Song, H.J.; Park, K.H.; Noh, H.M. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metab. Clin. Exp. 2020, 111, 154336. [Google Scholar] [CrossRef] [PubMed]
- Manouchehrinia, A.; Hedström, A.K.; Alfredsson, L.; Olsson, T.; Hillert, J.; Ramanujam, R. Association of Pre-Disease Body Mass Index With Multiple Sclerosis Prognosis. Front. Neurol. 2018, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Langley, M.R.; Triplet, E.M.; Scarisbrick, I.A. Dietary influence on central nervous system myelin production, injury, and regeneration. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165779. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, X.; Hu, X.; Wang, T.; Jin, F. Recognizing Depression from the Microbiota(-)Gut(-)Brain Axis. Int. J. Mol. Sci. 2018, 19, 1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Duan, Y.; Han, X.; Dong, H.; Geng, J. Prevalence of Small Intestinal Bacterial Overgrowth in Multiple Sclerosis: A Case-Control Study from China. J. Neuroimmunol. 2016, 301, 83–87. [Google Scholar] [CrossRef]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Repáraz, J.; Kirby, T.O.; Kasper, L.H. The Gut Microbiome and Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Pröbstel, A.K.; Zhou, X.; Baumann, R.; Wischnewski, S.; Kutza, M.; Rojas, O.L.; Sellrie, K.; Bischof, A.; Kim, K.; Ramesh, A.; et al. Gut microbiota-specific IgA(+) B cells traffic to the CNS in active multiple sclerosis. Sci. Immunol. 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.M.; Pagovich, O.E.; Kriegel, M.A. Diet, microbiota and autoimmune diseases. Lupus 2014, 23, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Altamura, F.; Maurice, C.F.; Castagner, B. Drugging the gut microbiota: Toward rational modulation of bacterial composition in the gut. Curr. Opin. Chem. Biol. 2020, 56, 10–15. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Lin, B.F. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun. Rev. 2011, 11, 22–27. [Google Scholar] [CrossRef]
- Jordan, S.; Tung, N.; Casanova-Acebes, M.; Chang, C.; Cantoni, C.; Zhang, D.; Wirtz, T.H.; Naik, S.; Rose, S.A.; Brocker, C.N.; et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2019, 178, 1102–1114.e1117. [Google Scholar] [CrossRef]
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018, 27, 1222–1235.e1226. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A.H.; Morgan, T.E.; et al. A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016, 15, 2136–2146. [Google Scholar] [CrossRef] [Green Version]
- Aloizou, A.M.; Pateraki, G.; Anargyros, K.; Siokas, V.; Bakirtzis, C.; Liampas, I.; Nousia, A.; Nasios, G.; Sgantzos, M.; Peristeri, E.; et al. Transcranial magnetic stimulation (TMS) and repetitive TMS in multiple sclerosis. Rev. Neurosci. 2021. [Google Scholar] [CrossRef]
- Miclea, A.; Miclea, M.; Pistor, M.; Hoepner, A.; Chan, A.; Hoepner, R. Vitamin D supplementation differentially affects seasonal multiple sclerosis disease activity. Brain Behav. 2017, 7, e00761. [Google Scholar] [CrossRef] [Green Version]
- Luczyński, W.; Wawrusiewicz-Kurylonek, N.; Iłendo, E.; Bossowski, A.; Głowińska-Olszewska, B.; Krętowski, A.; Stasiak-Barmuta, A. Generation of functional T-regulatory cells in children with metabolic syndrome. Arch. Immunol. Ther. Exp. 2012, 60, 487–495. [Google Scholar] [CrossRef]
- Łuczyński, W.; Stasiak-Barmuta, A.; Wawrusiewicz-Kurylonek, N.; Kowalczuk, O.; Iłendo, E.; Głowińska-Olszewska, B.; Urban, R.; Szczepański, W.; Urban, M.; Kretowski, A.; et al. Disturbances in some gene expression in T regulatory cells separated from children with metabolic syndrome. Scand. J. Immunol. 2010, 71, 115–122. [Google Scholar] [CrossRef]
- Wilkinson, D.S.; Ghosh, D.; Nickle, R.A.; Moorman, C.D.; Mannie, M.D. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25(high) FOXP3(+) Regulatory T Cells As a Basis for a Regulatory T Cell-Based Adoptive Immunotherapy. Front. Immunol. 2017, 8, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalan Farmanfarma, K.; Kaykhaei, M.A.; Adineh, H.A.; Mohammadi, M.; Dabiri, S.; Ansari-Moghaddam, A. Prevalence of metabolic syndrome in Iran: A meta-analysis of 69 studies. Diabetes Metab. Syndr. 2019, 13, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Wens, I.; Dalgas, U.; Stenager, E.; Eijnde, B.O. Risk factors related to cardiovascular diseases and the metabolic syndrome in multiple sclerosis—A systematic review. Mult. Scler. 2013, 19, 1556–1564. [Google Scholar] [CrossRef] [Green Version]
- Ciampi, E.; Uribe-San-Martin, R.; Soler, B.; Molnar, K.; Reyes, D.; Keller, K.; Carcamo, C. Prevalence of comorbidities in Multiple Sclerosis and impact on physical disability according to disease phenotypes. Mult. Scler. Relat. Disord. 2020, 46. [Google Scholar] [CrossRef]
- Cierny, D.; Lehotsky, J.; Hanysova, S.; Michalik, J.; Kantorova, E.; Sivak, S.; Kurca, E.; Dobrota, D.; Jesenska, L. The age at onset in Multiple Sclerosis is associated with patient’s prognosis. Bratisl. Lek. Listy 2017, 118, 374–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillemin, F.; Baumann, C.; Epstein, J.; Kerschen, P.; Garot, T.; Mathey, G.; Debouverie, M. Older Age at Multiple Sclerosis Onset Is an Independent Factor of Poor Prognosis: A Population-Based Cohort Study. Neuroepidemiology 2017, 48, 179–187. [Google Scholar] [CrossRef]
- Briggs, F.B.S.; Thompson, N.R.; Conway, D.S. Prognostic factors of disability in relapsing remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 30, 9–16. [Google Scholar] [CrossRef]
- Andravizou, A.; Artemiadis, A.; Bakirtzis, C.; Siokas, V.; Aloizou, A.M.; Peristeri, E.; Kapsalaki, E.; Tsimourtou, V.; Hadjigeorgiou, G.M.; Dardiotis, E. Brain volume dynamics in multiple sclerosis. A case-control study. Neurol. Res. 2019, 41, 936–942. [Google Scholar] [CrossRef]
- Rikos, D.; Siokas, V.; Aloizou, A.M.; Tsouris, Z.; Aslanidou, P.; Koutsis, G.; Anagnostouli, M.; Bogdanos, D.P.; Grigoriadis, N.; Hadjigeorgiou, G.M.; et al. TREM2 R47H (rs75932628) variant is unlikely to contribute to Multiple Sclerosis susceptibility and severity in a large Greek MS cohort. Mult. Scler. Relat. Disord. 2019, 35, 116–118. [Google Scholar] [CrossRef]
- Dardiotis, E.; Arseniou, S.; Sokratous, M.; Tsouris, Z.; Siokas, V.; Mentis, A.A.; Michalopoulou, A.; Andravizou, A.; Dastamani, M.; Paterakis, K.; et al. Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2017, 17, 190–197. [Google Scholar] [CrossRef]
- Jacobs, B.M.; Noyce, A.J.; Giovannoni, G.; Dobson, R. BMI and low vitamin D are causal factors for multiple sclerosis: A Mendelian Randomization study. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- So, W.Y.; Kalron, A. The Association between Body Mass Index and Leisure-Time Physical Activity in Adults with Multiple Sclerosis. Int. J. Environ. Res. Public Health 2020, 17, 920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andravizou, A.; Siokas, V.; Artemiadis, A.; Bakirtzis, C.; Aloizou, A.M.; Grigoriadis, N.; Kosmidis, M.H.; Nasios, G.; Messinis, L.; Hadjigeorgiou, G.; et al. Clinically reliable cognitive decline in relapsing remitting multiple sclerosis: Is it the tip of the iceberg? Neurol. Res. 2020, 42, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roxburgh, R.H.; Seaman, S.R.; Masterman, T.; Hensiek, A.E.; Sawcer, S.J.; Vukusic, S.; Achiti, I.; Confavreux, C.; Coustans, M.; le Page, E.; et al. Multiple Sclerosis Severity Score: Using disability and disease duration to rate disease severity. Neurology 2005, 64, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
Characteristics | |
---|---|
Age at onset, years (mean ± SD) | 30.69 ± 9.44 |
Sex (female) n (%) | 562 (68.5%) |
History smoking | |
Yes, % | 69.9% |
No, % | 30.1% |
History of alcohol consumption | |
Yes, % | 13.9% |
No, % | 86.1% |
BMI (mean ± SD) | 25.72 ± 6.21 |
Height, m (mean ± SD) | 1.69 ± 0.084 |
Weight, kg (mean ± SD) | 71.97 ± 15.53 |
1st Quartile, Score: 15.92 to 21.53244 (n = 205) | 2nd Quartile, Score: >21.53244 to 24.22145 (n = 206) | 3rd Quartile, Score: > 24.22145 to 28.07073 (n = 205) | 4th Quartile, Score: >28.07073 to 66.14 (n = 205) | p for Trend | |
---|---|---|---|---|---|
Age at onset, years (mean ± SD) | 27.91 ± 7.92 c, d | 29.72 ± 9.39 c, d | 32.36 ± 10.17 a, b | 32.90 ± 9.38 a, b | <0.001 |
Sex (female) n (%) | 182 (88.8%) b, c, d | 148 (78.1%) a, c, d | 106 (51.7%) a, b, d | 126 (61.5%) a, b, c | 0.013 |
History smoking | 0.930 | ||||
Yes (%) | 71.9% | 66.9% | 70.7% | 70.2% | |
No (%) | 28.1% | 33.1% | 29.3% | 29.8% | |
History of alcohol consumption | 0.401 | ||||
Yes (%) | 12.1% | 11.9% | 20.5% | 11.9% | |
No (%) | 87.9% | 88.1% | 79.5% | 88.1% |
Beta ± SE | 95%CI | p-Value | |
---|---|---|---|
Unadjusted | 0.255 ± 0.061 | (0.136 to 0.374) | <0.001 |
Adjusted * | 0.273 ± 0.061 | (0.152 to 0.393) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siokas, V.; Katsiardanis, K.; Aloizou, A.-M.; Bakirtzis, C.; Liampas, I.; Koutlas, E.; Rudolf, J.; Ntinoulis, K.; Kountouras, J.; Dardiotis, E.; et al. Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study. Neurol. Int. 2021, 13, 517-526. https://doi.org/10.3390/neurolint13040051
Siokas V, Katsiardanis K, Aloizou A-M, Bakirtzis C, Liampas I, Koutlas E, Rudolf J, Ntinoulis K, Kountouras J, Dardiotis E, et al. Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study. Neurology International. 2021; 13(4):517-526. https://doi.org/10.3390/neurolint13040051
Chicago/Turabian StyleSiokas, Vasileios, Konstantinos Katsiardanis, Athina-Maria Aloizou, Christos Bakirtzis, Ioannis Liampas, Evangelos Koutlas, Jobst Rudolf, Konstantinos Ntinoulis, Jannis Kountouras, Efthimios Dardiotis, and et al. 2021. "Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study" Neurology International 13, no. 4: 517-526. https://doi.org/10.3390/neurolint13040051
APA StyleSiokas, V., Katsiardanis, K., Aloizou, A. -M., Bakirtzis, C., Liampas, I., Koutlas, E., Rudolf, J., Ntinoulis, K., Kountouras, J., Dardiotis, E., & Deretzi, G. (2021). Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study. Neurology International, 13(4), 517-526. https://doi.org/10.3390/neurolint13040051