New Serotonin-Norepinephrine Reuptake Inhibitors and Their Anesthetic and Analgesic Considerations
Abstract
:1. Introduction
2. Serotonin-Norepinephrine Reuptake Inhibitors
2.1. Desvenlafaxine
2.2. Duloxetine
2.3. Levomilnacipran
2.4. Milnacipran
2.5. Sibutramine
2.6. Tramadol
2.7. Venlafaxine
3. Discussions
3.1. Preoperative Considerations
3.2. Intraoperative Considerations
3.3. Postoperative Considerations
3.4. Serotonin Syndrome
3.5. Emerging Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuentes, A.; Pineda, M.; Venkata, K. Comprehension of Top 200 Prescribed Drugs in the US as a Resource for Pharmacy Teaching, Training and Practice. Pharmacy 2018, 6, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Product Information: KHEDEZLA Oral Extended-Release Tablets, Desvenlafaxine Oral Extended-Release Tablets, Par Pharmaceutical Companies, Inc. (per FDA): Spring Valley, New York, NY, USA, 2013.
- Product Information: CYMBALTA(R) Delayed-Release Oral Capsules, Duloxetine Hcl Delayed-Release Oral Capsules, Eli Lilly and Company: Indianapolis, IN, USA, 2008.
- Product Information: FETZIMA(TM) Oral Extended-Release Capsules, Levomilnacipran Oral Extended-Release Capsules, Forest Pharmaceuticals, Inc. (per manufacturer): St. Louise, MO, USA, 2013.
- Product Information: Savella(R) Oral Tablets, Milnacipran HCl Oral Tablets; Allergan USA, Inc. (per FDA): Irvine, CA, USA, 2017.
- Product Information: ULTRAM(R) oral Tablets, Tramadol hydrocH.L.oride Oral Tablets, Ortho-McNeil Pharmaceutical Inc.: Raritan, NJ, USA, 2007.
- Product Information: EFFEXOR(R) Oral Tablets, Venlafaxine Hcl Oral Tablets, Wyeth Pharmaceuticals Inc.: Philadelphia, PA, USA, 2008.
- Shelton, R. Serotonin and Norepinephrine Reuptake Inhibitors. Handb Exp. Pharmacol. 2019, 250, 145–180. [Google Scholar] [CrossRef] [PubMed]
- Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Vivier, P.M.; Galea, S. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw Open. 2020, 3, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Twenge, J.M.; Joiner, T.E. U.S. Census Bureau-assessed prevalence of anxiety and depressive symptoms in 2019 and during the 2020 COVID-19 pandemic. Depress. Anxiety. 2020, 37, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Vahratian, A.; Blumberg, S.J.; Terlizzi, E.P.; Schiller, J.S. Symptoms of Anxiety or Depressive Disorder and Use of Mental Health Care among Adults during the COVID-19 Pandemic—United States, August 2020–February 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 490–494. [Google Scholar] [CrossRef]
- Colvard, M.D. Key differences between Venlafaxine XR and Desvenlafaxine: An analysis of pharmacokinetic and clinical data. Ment Heal. Clin. 2014, 4, 35–39. [Google Scholar] [CrossRef]
- Preskorn, S.; Patroneva, A.; Silman, H.; Jiang, Q.; Isler, J.A.; Burczynski, M.E.; Ahmed, S.; Paul, J.; Nichols, A.I. Comparison of the Pharmacokinetics of Venlafaxine Extended Release and Desvenlafaxine in Extensive and Poor Cytochrome P450 2D6 Metabolizers. J. Clin. Psychopharmacol. 2009, 29, 39–43. [Google Scholar] [CrossRef]
- Khurana, T. A Case Report: Desvenlafaxine and Anesthesia. Int. J. Adv. Case Rep. 2015, 2, 578–582. [Google Scholar]
- Gurunathan, U. Takotsubo Cardiomyopathy and Intraoperative Cardiac Arrest: Is Desvenlafaxine a Contributing Factor? J. Cardiothorac Vasc Anesth. 2018, 32, e16–e18. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.R.; Urits, I.; Wolf, J.; Corrigan, D.; Colburn, L.; Peterson, E.; Williamson, A.; Viswanath, O. Drug-Induced Peripheral Neuropathy: A Narrative Review. Curr. Clin. Pharmacol. 2020, 15, 38–48. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Takata, J.; Arashi, T.; Abe, A.; Arai, S.; Haruyama, N. Serotonin syndrome triggered by postoperative administration of serotonin noradrenaline reuptake inhibitor (SNRI). JA Clin. Rep. 2019, 5, 21–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellingham, G.A.; Peng, P.W.H. Duloxetine: A review of its pharmacology and use in chronic pain management. Reg. Anesth. Pain Med. 2010, 35, 294–303. [Google Scholar] [CrossRef]
- Kalso, E.; Aldington, D.J.; Moore, R.A. Drugs for neuropathic pain. BMJ. 2013, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegri, M.; Baron, R.; Hans, G.; Correa-Illanes, G.; Rojals, V.M.; Mick, G.; Serpell, M. A pharmacological treatment algorithm for localized neuropathic pain. Curr. Med Res. Opin. 2015, 32, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Esmat, I.M.; Kassim, D.Y.; Elgendy, M.A. Impact of duloxetine and dexamethasone for improving postoperative pain after laparoscopic gynecological surgeries: A randomized clinical trial. Saudi J. Anaesth. 2018, 12, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-H.; Li, H.-S.; Zhu, C.; Hu, W.; Yang, J.; Zhao, G.-L.; Lu, G.-J.; Wu, S.-X.; Dong, Y.-L. The analgesia effect of duloxetine on post-operative pain via intrathecal or intraperitoneal administration. Neurosci. Lett. 2014, 568, 6–11. [Google Scholar] [CrossRef]
- YaDeau, J.T.; Brummett, C.; Mayman, D.J.; Lin, Y.; Goytizolo, E.A.; Padgett, D.E.; Alexiades, M.M.; Kahn, R.L.; Jules-Elysee, K.M.; Fields, K.G.; et al. Duloxetine and Subacute Pain after Knee Arthroplasty when Added to a Multimodal Analgesic Regimen. Anesthesiology 2016, 125, 561–572. [Google Scholar] [CrossRef]
- Bedin, A.; Bedin, R.A.C.; Vieira, J.; Ashmawi, H.A. Duloxetine as an Analgesic Reduces Opioid Consumption after Spine Surgery. Clin. J. Pain 2017, 33, 865–869. [Google Scholar] [CrossRef]
- Wong, K.; Phelan, R.; Kalso, E.; Galvin, I.; Goldstein, D.H.; Raja, S.; Gilron, I. Antidepressant Drugs for Prevention of Acute and Chronic Postsurgical Pain. Anesthesiology 2014, 121, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Heinz, B.; Lorenzo, P.; Markus, R.; Holger, H.; Beatrix, R.; Erich, S.; Alain, B. Postictal Ventricular Tachycardia after Electroconvulsive Therapy Treatment Associated with a Lithium-Duloxetine Combination. J. ECT 2013, 29, e33–e35. [Google Scholar] [CrossRef]
- Perahia, D.G.; Kajdasz, D.K.; Desaiah, D.; Haddad, P.M. Symptoms following abrupt discontinuation of duloxetine treatment in patients with major depressive disorder. J. Affect. Disord. 2005, 89, 207–212. [Google Scholar] [CrossRef]
- Gautam, M.; Kaur, M.; Jagtap, P.; Krayem, B. Levomilnacipran: More of the Same? Prim. Care Companion CNS Disord. 2019, 21, 21–22. [Google Scholar] [CrossRef]
- Mago, R.; Mahajan, R.; Thase, M.E. Levomilnacipran: A newly approved drug for treatment of major depressive disorder. Expert Rev. Clin. Pharmacol. 2014, 7, 137–145. [Google Scholar] [CrossRef]
- Keks, N.A.; Hope, J.; Keogh, S.; Copolov, D.L. Milnacipran: Serotonin-noradrenaline reuptake inhibitor approved for fibromyalgia may be a useful antidepressant. Australas Psychiatry 2018, 26, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Derry, S.; Phillips, T.; Moore, R.A.; Wiffen, P.J. Milnacipran for neuropathic pain in adults. Cochrane Database Syst. Rev. 2015, 2017, 4–5. [Google Scholar] [CrossRef] [PubMed]
- James, W.P.; Caterson, I.D.; Coutinho, W.; Finer, N.; Van Gaal, L.F.; Maggioni, A.P.; Torp-Pedersen, C.; Sharma, A.M.; Shepherd, G.M.; Rode, R.A.; et al. SCOUT Investigators. Effect of Sibutramine on Cardiovascular Outcomes in Overweight and Obese Subjects. N. Engl. J. Med. 2010, 363, 905–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckett, W.R.; Thomas, P.C.; Luscombe, G.P. The pharmacology of sibutramine hydrocH.L.oride (BTS 54 524), a new antidepressant which induces rapid noradrenergic down-regulation. Prog. Neuropsychopharmacol. Biol. Psychiatry 1988, 12, 575–584. [Google Scholar] [CrossRef]
- Duehmke, R.M.; Derry, S.; Wiffen, P.J.; Bell, R.F.; Aldington, D.; Moore, R.A. Tramadol for neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 2017, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A. Revisiting Tramadol: A Multi-Modal Agent for Pain Management. CNS Drugs. 2019, 33, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Hassamal, S.; Miotto, K.; Dale, W.; Danovitch, I. Tramadol: Understanding the Risk of Serotonin Syndrome and Seizures. Am. J. Med. 2018, 131, 1382.e1–1382.e6. [Google Scholar] [CrossRef] [PubMed]
- Ekşi, M.Ş.; Turgut, V.U.; Özcan-Ekşi, E.E.; Güngör, A.; Tükel Turgut, F.N.; Pamir, M.N. Serotonin Syndrome Following Tramadol and Gabapentin Use after Spine Surgery. World Neurosurg. 2019, 126, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Swain, A.; Nag, D.S.; Sahu, S.; Samaddar, D.P. Adjuvants to local anesthetics: Current understanding and future trends. World J. Clin. Cases. 2017, 5, 307. [Google Scholar] [CrossRef] [PubMed]
- Afolayan, J.M.; Olajumoke, T.O.; Amadasun, F.E.; Edomwonyi, N.P. Intrathecal tramadol versus intrathecal fentanyl for visceral pain control during bupivacaine subarachnoid block for open appendicectomy. Niger J. Clin. Pract. 2014, 17, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatrath, V.; Khetarpal, R.; Sharma, S.; Kumari, P.; Sudha Bali, K. Fentanyl versus tramadol with levobupivacaine for combined spinal-epidural analgesia in labor. Saudi J. Anaesth. 2015, 9, 263–267. [Google Scholar] [CrossRef]
- Acalovschi, I.; Cristea, T.; Margarit, S.; Gavrus, R. Tramadol added to lidocaine for intravenous regional anesthesia. Anesth Analg. 2001, 92, 209–214. [Google Scholar] [CrossRef]
- Shin, H.W.; Ju, B.J.; Jang, Y.K.; You, H.S.; Kang, H.; Park, J.Y. Effect of tramadol as an adjuvant to local anesthetics for brachial plexus block: A systematic review and meta-analysis. PLoS ONE. 2017, 12, e0184649. [Google Scholar] [CrossRef] [Green Version]
- Mannion, S.; O’Callaghan, S.; Murphy, D.B.; Shorten, G.D. Tramadol as adjunct to psoas compartment block with levobupivacaine 0.5%: A randomized double-blinded study. Br. J. Anaesth. 2005, 94, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Ege, B.; Calisir, M.; Al-Haideri, Y.; Ege, M.; Gungormus, M. Comparison of Local Anesthetic Efficiency of Tramadol HydrocH.L.oride and Lidocaine HydrocH.L.oride. J. Oral. Maxillofac Surg. 2018, 76, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Wackernah, R.C.; Stimmel, G.L. Serotonin syndrome: Is it a reason to avoid the use of tramadol with antidepressants? J. Pharm Pract. 2014, 27, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Park, S.-K.; Yoo, S.; Hur, M.; Kim, W.H.; Kim, J.-T.; Bahk, J.-H. Comparative effectiveness of pharmacologic interventions to prevent shivering after surgery: a network meta-analysis. Minerva Anestesiol. 2019, 85, 60–70. [Google Scholar] [CrossRef]
- Li, S.; Li, P.; Lin, X. Efficacy of the prophylactic administration of tramadol against postoperative shivering: A meta-analysis of randomized controlled trials. Minerva Anestesiol. 2017, 83, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, A.; Balachander, H.; Kuppusamy, S.K.; Arusamy, S.; Rai, Y.; Siddiqui, N. Comparison of meperidine, tramadol and fentanyl for post-spinal shivering prevention during cesarean delivery: A double-blind randomized controlled trial. J. Obstet Gynaecol. Res. 2019, 45, 2202–2208. [Google Scholar] [CrossRef]
- Nakagawa, T.; Hashimoto, M.; Hashimoto, Y.; Shirozu, K.; Hoka, S. The effects of tramadol on postoperative shivering after sevoflurane and remifentanil anesthesia. BMC Anesthesiol. 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Gupta, M. Intrathecal tramadol for prevention of postanesthesia shivering after subarachnoid block: A prospective randomized placebo-controlled comparison of two different doses (10 and 20 mg). Anesth Essays Res. 2018, 12, 495. [Google Scholar] [CrossRef]
- Richebé, P.; Brulotte, V.; Raft, J. Pharmacological strategies in multimodal analgesia for adults scheduled for ambulatory surgery. Curr. Opin. Anaesthesiol. 2019, 32, 720–726. [Google Scholar] [CrossRef]
- Smischney, N.J.; Pollard, E.M.; Nookala, A.U.; Olatoye, O.O. Serotonin syndrome in the perioperative setting. Am. J. Case Rep 2018, 19, 833–835. [Google Scholar] [CrossRef]
- Roy, S.; Fortier, L.P. Fentanyl-induced rigidity during emergence from general anesthesia potentiated by venlafexine. Can. J. Anesth. 2003, 50, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Coluzzi, F.; Mattia, C. Mechanism-Based Treatment in Chronic Neuropathic Pain: The Role of Antidepressants. Curr. Pharm. Des. 2005, 11, 2945–2960. [Google Scholar] [CrossRef]
- Amr, Y.M.; Yousef, A.A.A.M. Evaluation of efficacy of the perioperative administration of venlafaxine or gabapentin on acute and chronic postmastectomy pain. Clin. J. Pain. 2010, 26, 381–385. [Google Scholar] [CrossRef]
- Humble, S.R.; Dalton, A.J.; Li, L. A systematic review of therapeutic interventions to reduce acute and chronic post-surgical pain after amputation, thoracotomy or mastectomy. Eur. J. Pain 2015, 19, 451–465. [Google Scholar] [CrossRef] [Green Version]
- De Baerdemaeker, L.; Audenaert, K.; Peremans, K. Anaesthesia for patients with mood disorders. Curr. Opin. Anaesthesiol. 2005, 18, 333–338. [Google Scholar] [CrossRef]
- Saraghi, M.; Golden, L.R.; Hersh, E.V. Anesthetic considerations for patients on antidepressant therapy-part I. Anesth Prog. 2017, 64, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Nishimura, M.; Ois, H.L.M.; Iwashita, C.; Jinushi, K.; Matsumoto, A.; Kushikata, T.; Hirota, K. Effects of various antidepressants on hemodynamics during general anesthesia. Jpn. J. Anesthesiol. 2016, 65, 1226–1230. [Google Scholar] [CrossRef]
- Smith, M.M.; Smith, B.B.; Lahr, B.D.; Nuttall, G.A.; Mauermann, W.J.; Weister, T.J.; Dearani, J.A.; Barbara, D.W. Selective Serotonin Reuptake Inhibitors and Serotonin–Norepinephrine Reuptake Inhibitors Are Not Associated with Bleeding or Transfusion in Cardiac Surgical Patients. Anesthesia Analg. 2018, 126, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Bixby, A.L.; Vandenberg, A.; Bostwick, J.R. Clinical Management of Bleeding Risk with Antidepressants. Ann. Pharmacother. 2019, 53, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Mawardi, G.; Markman, T.M.; Muslem, R.; Sobhanian, M.; Converse, M.; Meadows, H.B.; Uber, W.E.; Russell, S.D.; Rouf, R.; Ramu, B.; et al. SSRI/SNRI Therapy is Associated with a Higher Risk of Gastrointestinal Bleeding in LVAD Patients. Hear. Lung Circ. 2020, 29, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Starlinger, P.; Pereyra, D.; Hackl, H.; Ortmayr, G.; Braunwarth, E.; Santol, J.; Najarnia, S.; Driedger, M.R.; Gregory, L.; Alva-Ruiz, R.; et al. Consequences of Perioperative Serotonin Reuptake Inhibitor Treatment during Hepatic Surgery. Hepatology 2021, 73, 1956–1966. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Meng, H.; Weinrib, A.; Englesakis, M.; Kumbhare, D.; Grosman-Rimon, L.; Katz, J.; Clarke, H. A Review of Adjunctive CNS Medications Used for the Treatment of Post-Surgical Pain. CNS Drugs 2017, 31, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Wick, E.; Grant, M.; Wu, C. Postoperative Multimodal Analgesia Pain Management with Nonopioid Analgesics and Techniques A Review. JAMA Surg. 2017, 152, 691–697. [Google Scholar] [PubMed]
- Li, Y.; Shi, J.; Yang, B.; Liu, L.; Han, C.L.; Li, W.M.; Dong, D.L.; Pan, Z.W.; Liu, G.Z.; Geng, J.Q.; et al. Ketamine-induced ventricular structural, sympathetic and electrophysiological remodelling: Pathological consequences and protective effects of metoprolol. Br. J. Pharmacol. 2012, 165, 1748–1756. [Google Scholar] [CrossRef] [Green Version]
- Koh, I.J.; Kim, M.S.; Sohn, S.; Song, K.Y.; Choi, N.Y.; In, Y. Duloxetine Reduces Pain and Improves Quality of Recovery Following Total Knee Arthroplasty in Centrally Sensitized Patients: A Prospective, Randomized Controlled Study. J. Bone Jt Surg Am. Vol. 2019, 101, 64–73. [Google Scholar] [CrossRef]
- Wang, R.Z.; Vashistha, V.; Kaur, S.; Houchens, N.W. Serotonin syndrome: Preventing, recognizing, and treating it. Cleve Clin. J. Med. 2016, 83, 810–817. [Google Scholar] [CrossRef]
- Francescangeli, J.; Karamchandani, K.; Powell, M.; Bonavia, A. The serotonin syndrome: From molecular mechanisms to clinical practice. Int. J. Mol. Sci. 2019, 20, 19. [Google Scholar] [CrossRef] [Green Version]
- Foong, A.L.; Grindrod, K.A.; Patel, T.; Kellar, J. Demystifying serotonin syndrome (or serotonin toxicity). Can. Fam Physician. 2018, 64, 1–2. [Google Scholar]
- Jurek, L.; Nourredine, M.; Megarbane, B.; d’Amato, T.; Dorey, J.M.; Rolland, B. The serotonin syndrome: An updated literature review. Rev. Med. Interne. 2019, 40, 98–104. [Google Scholar] [CrossRef]
- Dunkley, E.J.C.; Isbister, G.K.; Sibbritt, D.; Dawson, A.H.; Whyte, I.M. The hunter serotonin toxicity criteria: Simple and accurate diagnostic decision rules for serotonin toxicity. QJM Mon. J. Assoc. Physicians. 2003, 96, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Werneke, U.; Jamshidi, F.; Taylor, D.M.; Ott, M. Conundrums in neurology: Diagnosing serotonin syndrome—A meta-analysis of cases. BMC Neurol. 2016, 16, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matchanov, O.; Nelson, P. Perioperative Serotonin Syndrome Manifesting as Gastrocnemius Myofasciculations: A Case Report. Neurodiagn J. 2020, 60, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Altman, C.S.; Jahangiri, M.F. Serotonin syndrome in the perioperative period. Anesth Analg. 2010, 110, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.E.; Warner, P.A.; Sprung, J.; Warner, M.A. Black Seed Oil and Perioperative Serotonin Syndrome: A Case Report. A A Pract. 2019, 13, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.K.W.; Cameron, A.J.D.; Liang, R.; Rahman, H. Serotonin syndrome following methylene blue infusion during parathyroidectomy: A case report and literature review. Can. J. Anesth. 2008, 55, 36–41. [Google Scholar] [CrossRef]
- Katzianer, D.; Chism, K.; Qureshi, A.M.; Watson, R.; Massey, H.T.; Boyle, A.J.; Reeves, G.; Danelich, I. Serotonin syndrome following left ventricular assist device implantation: A report and institution-specific strategy for prevention. J. Cardiol. Cases 2019, 20, 218–220. [Google Scholar] [CrossRef]
- Davis, J.J.; Buck, N.S.; Swenson, J.D.; Johnson, K.B.; Greis, P.E. Serotonin syndrome manifesting as patient movement during total intravenous anesthesia with propofol and remifentanil. J. Clin. Anesth. 2013, 25, 52–54. [Google Scholar] [CrossRef]
- Nicolaou, G.; Lee, D. Methylene blue-induced serotonin syndrome presenting with ocular clonus and failure of emergence from general anesthesia. Can. J. Anesth. 2016, 63, 896–897. [Google Scholar] [CrossRef] [Green Version]
- Tzabazis, A.; Miller, C.; Dobrow, M.F.; Zheng, K.; Brock-Utne, J.G. Delayed emergence after anesthesia. J. Clin. Anesth. 2015, 27, 353–360. [Google Scholar] [CrossRef]
- Naik, A.; Rincon-Aznar, C. Delayed Recovery from General Anaesthesia: A Post-operative Diagnostic Dilemma and Implications of ICU Management of Serotonin Toxicity. Case report. J. Crit Care Med. 2015, 1, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Graudins, A.; Stearman, A.; Chan, B.; Kulig, K. Treatment of the serotonin syndrome with cyproheptadine. J. Emerg Med. 1998, 16, 615–619. [Google Scholar] [CrossRef]
- Boyer, E.W.; Shannon, M. Current concepts: The serotonin syndrome. N. Engl. J. Med. 2005, 352, 1112–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beatty, N.C.; Nicholson, W.T.; Langman, L.J.; Curry, T.B.; Eisenach, J.H. Pharmacogenetic workup of perioperative serotonin syndrome. J. Clin. Anesth. 2013, 25, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Otto, J.; Forstenpointner, J.; Binder, A.; Baron, R. Pharmacotherapy of chronic neuropathic pain. Internist 2019, 60, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Kremer, M.; Salvat, E.; Muller, A.; Yalcin, I.; Barrot, M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016, 338, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Li, N.; Berardino, K.; Artounian, K.A.; Bandi, P.; Jung, J.W.; Kaye, R.J.; Manchikanti, L.; Kaye, A.M.; Simopoulos, T.; et al. The use of antineuropathic medications for the treatment of chronic pain. Best Pr. Res. Clin. Anaesthesiol. 2020, 34, 493–506. [Google Scholar] [CrossRef]
- Clauw, D.; McCarberg, B.H. Managing Chronic Pain with Nonopioid Analgesics: A Multidisciplinary Consult. Am. J. Med. 2012, 125, S1. [Google Scholar] [CrossRef] [PubMed]
- Tasmuth, T.; Härtel, B.; Kalso, E. Venlafaxine in neuropathic pain following treatment of breast cancer. Eur. J. Pain. 2002, 6, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, H.C.; Gallagher, R.M.; Butler, M.; Buggy, D.J.; Henman, M.C. Venlafaxine for neuropathic pain. Cochrane Database Syst. Rev. 2014, 2014, 19–21. [Google Scholar] [CrossRef]
- Schukro, R.P.; Oehmke, M.J.; Geroldinger, A.; Heinze, G.; Kress, H.G.; Pramhas, S. Efficacy of duloxetine in chronic low back pain with a neuropathic component: A randomized, double-blind, placebo-controlled crossover trial. Anesthesiology 2016, 124, 150–158. [Google Scholar] [CrossRef]
- Konno, S.; Oda, N.; Ochiai, T.; Alev, L. Randomized, double-blind, placebo-controlled phase III trial of duloxetine monotherapy in Japanese patients with chronic low back pain. Spine 2016, 41, 1709–1717. [Google Scholar] [CrossRef]
- Kim, N.Y.; Lee, S.C.; Kim, Y.W. Effect of Duloxetine for the Treatment of Chronic Central Poststroke Pain. Clin. Neuropharmacol. 2019, 42, 73–76. [Google Scholar] [CrossRef]
- Welsch, P.; Üçeyler, N.; Klose, P.; Walitt, B.; Häuser, W. Serotonin and noradrenaline reuptake inhibitors (SNRIs) for fibromyalgia. Cochrane Database Syst. Rev. 2018, 2018, 19–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, J.; Cao, Y.; Xu, Z. Serotonin-norepinephrine reuptake inhibitors for the prevention of migraine and vestibular migraine: A systematic review and meta-analysis. Reg. Anesth Pain Med. 2020, 45, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Banzi, R.; Cusi, C.; Randazzo, C.; Sterzi, R.; Tedesco, D.; Moja, L. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) for the prevention of migraine in adults. Cochrane Database Syst. Rev. 2015, 2015, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Telang, S.; Walton, C.; Olten, B.; Bloch, M.H. Meta-analysis: Second generation antidepressants and headache. J. Affect. Disord. 2018, 236, 60–68. [Google Scholar] [CrossRef]
- Osani, M.C.; Bannuru, R.R. Efficacy and safety of duloxetine in osteoarthritis: A systematic review and meta-analysis. Korean J. Intern. Med. 2019, 34, 966–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauw, D.J.; Hassett, A.L. The role of centralised pain in osteoarthritis. Clin. Exp. Rheumatol. 2017, 35, S79–S84. [Google Scholar]
- Gül, Ş.K.; Tepetam, H.; Gül, H.L. Duloxetine and pregabalin in neuropathic pain of lung cancer patients. Brain Behav. 2020, 10, 1–2. [Google Scholar] [CrossRef]
- Kim, M.H.; Oh, J.E.; Park, S.; Kim, J.H.; Lee, K.Y.; Bai, S.J.; Song, H.; Hwang, H.J.; Kim, D.W.; Yoo, Y.C. Tramadol use is associated with enhanced postoperative outcomes in breast cancer patients: A retrospective clinical study with in vitro confirmation. Br. J. Anaesth. 2019, 123, 865–876. [Google Scholar] [CrossRef]
- Grassi, L.; Nanni, M.G.; Rodin, G.; Li, M.; Caruso, R. The use of antidepressants in oncology: A review and practical tips for oncologists. Ann. Oncol. 2018, 29, 101–111. [Google Scholar] [CrossRef]
Drug (FDA Approval) | FDA Approved Indications for Use | Bioavailability (Oral) | Protein Binding | Metabolism | Elimination | T1/2 (Hours) | Severe Side Effects |
---|---|---|---|---|---|---|---|
Desvenlafaxine (2008) | Major Depressive Disorder | 80% | 30% | Hepatic; conjugation, primary; CYP3A4, minor pathway | Renal: 45%, unchanged; up to 24% changed | 10–11.1 | Hypertension, angioedema, suicidal ideation, serotonin syndrome |
Duloxetine (2004) | Major Depressive Disorder, Generalized Anxiety Disorder, Fibromyalgia, Diabetic Peripheral Neuropathy, Musculoskeletal pain | 30–80% | >90% | Hepatic: P450 CYP2D6 and CYP1A2 via conjugation and oxidation | Fecal: 20% Renal: 70% as metabolites | 12 | Hypertensive crisis, Steven-Johnson Syndrome, withdrawal syndrome, serotonin syndrome, liver failure |
Levomilnacipran (2013) | Major Depressive Disorder | 92% | 22% | Desethylation by CYP3A4, and hydroxylation with further conjugation | Renal: 58% unchanged, 27% identifiable metabolites | 12 | Hypertension, suicidal ideation, serotonin syndrome, drug withdrawal, seizure |
Milnacipran (1996) | Fibromyalgia | 85–90% | 13% | Hepatic | Renal: 50% to 60% unchanged drug | 6–8 | Hypertensive crisis, Erythema multiforme, Stevens-Johnson syndrome, Fulminant hepatitis, suicidal ideation, serotonin syndrome |
Tramadol (1977) | Pain management | 70–75% | 20% | Hepatic: extensive via CYP2D6 and CYP3A4, conjugation, N- and O-demethylation, and glucuronidation or sulfation | Renal excretion: 60% as metabolite; approximately 30% unchanged | 5.6–6.7 | Dyspnea, respiratory depression, serotonin syndrome |
Venlafaxine (1994) | Panic disorder, generalized anxiety disorder, major depressive disorder, social phobia | 42% | 27–30% | Hepatic: extensive first-pass via P450 CYP2D6 | Fecal: 2% Renal: 87%, 82% as metabolites, 5% unchanged | 5 | Neuroleptic malignant syndrome, Serotonin syndrome, suicidal ideation |
Medication or Medication Class | Mechanism of Serotonin Modulation |
---|---|
Cocaine, meperidine, tramadol, cyclobenzaprine, sibutramine, dextromethorphan, selective serotonin reuptake inhibitors, St. John’s wort, cyclobenzaprine, 5-HT3 receptor antagonists, serotonin norepinephrine reuptake inhibitors, trazadone, cyclic antidepressants | Inhibits presynaptic neuronal reuptake of serotonin |
Fentanyl, lasmiditan, lysergic acid diethylamide, triptans, ergot derivatives, metaxalone | Functions as a direct agonist at serotonin receptor |
Monoamine Oxidase Inhibitors (MOAIs), MOAI-A inhibitors, MOAI-B inhibitors | Inhibits metabolism of serotonin through inhibition of monoamine oxidase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli, D.; Weller, G.; Liu, H. New Serotonin-Norepinephrine Reuptake Inhibitors and Their Anesthetic and Analgesic Considerations. Neurol. Int. 2021, 13, 497-509. https://doi.org/10.3390/neurolint13040049
Fanelli D, Weller G, Liu H. New Serotonin-Norepinephrine Reuptake Inhibitors and Their Anesthetic and Analgesic Considerations. Neurology International. 2021; 13(4):497-509. https://doi.org/10.3390/neurolint13040049
Chicago/Turabian StyleFanelli, David, Gregory Weller, and Henry Liu. 2021. "New Serotonin-Norepinephrine Reuptake Inhibitors and Their Anesthetic and Analgesic Considerations" Neurology International 13, no. 4: 497-509. https://doi.org/10.3390/neurolint13040049
APA StyleFanelli, D., Weller, G., & Liu, H. (2021). New Serotonin-Norepinephrine Reuptake Inhibitors and Their Anesthetic and Analgesic Considerations. Neurology International, 13(4), 497-509. https://doi.org/10.3390/neurolint13040049