Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations
Abstract
:1. Introduction
2. SSRI History, Uses, and Mechanism of Action
2.1. History
2.2. Uses
2.3. Mechanism of Action
2.4. SSRIs Side Effects and Safety Concerns
2.5. Serotonin Syndrome
- Spontaneous clonus
- Inducible clonus and agitation or diaphoresis
- Ocular clonus and agitation or diaphoresis
- Tremor and hyperreflexia
- Hypertonia
- Temperature > 38 °C and ocular clonus or inducible clonus [41]
2.6. Persistent Pulmonary Hypertension in Newborns
2.7. Prolonged QT Interval
- -
- No QT prolongation: fluoxetine and sertraline
- -
- QT prolongation only on coadministration with other QT prolongers: paroxetine
- -
- Potential risk of prolonged QT in monotherapy: citalopram (demonstrated) and escitalopram (potential)
2.8. Sexual Side Effects
2.9. Gastrointestinal Side Effects
2.10. Sedation
2.11. SSRI Induced Activation
2.12. SSRIs Pharmacokinetics/Pharmacodynamics
3. Clozapine
Clozapine Mechanism of Action, Pharmacokinetics, and Pharmacodynamics
4. SSRIs and Augmentation
5. Drug Interactions with Clozapine Levels/Drug Interactions
6. Clinical Studies: Safety and Efficacy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J. Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future 2004, 29, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Hovde, M.J.; Larson, G.H.; Vaughan, R.A.; Foster, J.D. Model systems for analysis of dopamine transporter function and regulation. Neurochem. Int. 2019, 123, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Mortensen, O.V. Overview of Monoamine Transporters. Curr. Protoc. Pharmacol. 2017, 79, 12–16. Available online: https://onlinelibrary.wiley.com/doi/10.1002/cpph.32 (accessed on 24 March 2021). [CrossRef]
- Joshi, A. Selective Serotonin Re-uptake Inhibitors: An overview. Psychiatr. Danub. 2018, 30 (Suppl. 7), 605–609. [Google Scholar]
- Wright, B.M.; Eiland, E.H.; Lorenz, R. Augmentation with Atypical Antipsychotics for Depression: A Review of Evidence-Based Support from the Medical Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 344–359. [Google Scholar] [CrossRef]
- Schildkraut, J.J. The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am. J. Psychiatry 1965, 122, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A. Functional Significance of Drug-Induced Changes in Brain Monoamine Levels. In Progress in Brain Research; Biogenic, A., Himwich, H.E., Himwich, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1964; Volume 8, pp. 9–27. Available online: https://www.sciencedirect.com/science/article/pii/S0079612308601107 (accessed on 10 March 2021).
- Glowinski, J.; Kopin, I.J.; Axelrod, J. Metabolism of [3 h] norepinephrine in the Rat Brain. J. Neurochem. 1965, 12, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Herting, G.; Axelrod, J.; Whitby, L.G. Effect of drugs on the uptake and metabolism of H3-norepinephrine. J. Pharmacol. Exp. Ther. 1961, 134, 146–153. [Google Scholar]
- Feighner, J.P. Mechanism of action of antidepressant medications. J. Clin. Psychiatry 1999, 60 (Suppl. 4), 4–11. [Google Scholar]
- Gardner, D.M.; Shulman, K.I.; Walker, S.E.; Tailor, S.A. The making of a user friendly MAOI diet. J. Clin. Psychiatry 1996, 57, 99–104. [Google Scholar]
- Shulman, K.I.; Walker, S.E.; MacKenzie, S.; Knowles, S. Dietary restriction, tyramine, and the use of monoamine oxidase inhibitors. J. Clin. Psychopharmacol. 1989, 9, 397–402. [Google Scholar] [CrossRef]
- Brambilla, P.; Cipriani, A.; Hotopf, M.; Barbui, C. Side-effect profile of fluoxetine in comparison with other SSRIs, tricyclic and newer antidepressants: A meta-analysis of clinical trial data. Pharmacopsychiatry 2005, 38, 69–77. [Google Scholar] [CrossRef]
- Anderson, I.M.; Tomenson, B.M. Treatment discontinuation with selective serotonin reuptake inhibitors compared with tricyclic antidepressants: A meta-analysis. BMJ 1995, 310, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Weilburg, J.B. An overview of SSRI and SNRI therapies for depression. Manag. Care 2004, 13 (Suppl. 6), 25–33. [Google Scholar] [PubMed]
- Compton, S.N.; Grant, P.J.; Chrisman, A.K.; Gammon, P.J.; Brown, V.L.; March, J.S. Sertraline in Children and Adolescents With Social Anxiety Disorder: An Open Trial. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Salaminios, G.; Duffy, L.; Ades, A.; Araya, R.; Button, K.S.; Churchill, R.; Croudace, T.; Derrick, C.; Dixon, P.; Dowrick, C.; et al. A randomised controlled trial assessing the severity and duration of depressive symptoms associated with a clinically significant response to sertraline versus placebo, in people presenting to primary care with depression (PANDA trial): Study protocol for a randomised controlled trial. Trials 2017, 18, 496. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655852/ (accessed on 2 March 2021). [PubMed] [Green Version]
- Lewis, G.; Duffy, L.; Ades, T.; Amos, R.; Araya, R.; Brabyn, S.; Button, K.S.; Churchill, R.; Derrick, C.; Dowrick, C.; et al. The clinical effectiveness of sertraline in primary care and the role of depression severity and duration (PANDA): A pragmatic, double-blind, placebo-controlled randomised trial. Lancet Psychiatry 2019, 6, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Treatment of Severe Obsessive-Compulsive Disorder with Fluvoxamine|American Journal of Psychiatry. Available online: https://ajp.psychiatryonline.org/doi/10.1176/ajp.144.8.1059?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed& (accessed on 4 March 2021).
- Price, L.H.; Goodman, W.K.; Charney, D.S.; Rasmussen, S.A.; Heninger, G.R. Treatment of severe obsessive-compulsive disorder with fluvoxamine. Am. J. Psychiatry 1987, 144, 1059–1061. [Google Scholar] [PubMed]
- Gorman, J.M.; Kent, J.M. SSRIs and SNRIs: Broad Spectrum of Efficacy Beyond Major Depression. Available online: https://www.psychiatrist.com/jcp/depression/ssris-snris-broad-spectrum-efficacy-beyond-major-depression/ (accessed on 22 February 2021).
- Pigott, T.A.; Pato, M.T.; Bernstein, S.E.; Grover, G.N.; Hill, J.L.; Tolliver, T.J.; Murphy, D.L. Controlled comparisons of clomipramine and fluoxetine in the treatment of obsessive-compulsive disorder. Behavioral and biological results. Arch. Gen. Psychiatry 1990, 47, 926–932. [Google Scholar] [CrossRef]
- Jenike, M.A. Clinical practice. Obsessive-compulsive disorder. N. Engl. J. Med. 2004, 350, 259–265. [Google Scholar] [CrossRef]
- Dunbar, G.; Steiner, M.; Bushnell, W.D.; Gergel, I.; Wheadon, D.E. Long-term treatment and prevention of relapse of obsessive compulsive disorder with paroxetine. Eur. Neuropsychopharmacol. 1995, 3, 372. [Google Scholar] [CrossRef]
- Bruce, S.E.; Goisman, R.M.; Salzman, C.; Spencer, M.; Machan, J.T.; Vasile, R.G.; Keller, M.B. Are benzodiazepines still the medication of choice for patients with panic disorder with or without agoraphobia? Am. J. Psychiatry 2003, 160, 1432–1438. [Google Scholar] [CrossRef]
- Tan, J.Y.; Levin, G.M. Citalopram in the treatment of depression and other potential uses in psychiatry. Pharmacotherapy 1999, 19, 675–689. [Google Scholar] [CrossRef]
- Humble, M.; Wistedt, B. Serotonin, panic disorder and agoraphobia: Short-term and long-term efficacy of citalopram in panic disorders. Int. Clin. Psychopharmacol. 1992, 6 (Suppl. 5), 21–39. [Google Scholar] [CrossRef]
- Stahl, S.M.; Gergel, I.; Li, D. Escitalopram in the treatment of panic disorder: A randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 2003, 64, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Lepola, U.M.; Loft, H.; Reines, E.H. Escitalopram (10–20 mg/day) is effective and well tolerated in a placebo-controlled study in depression in primary care. Int. Clin. Psychopharmacol. 2003, 18, 211–217. [Google Scholar] [CrossRef] [PubMed]
- vanApeldoorn, F.J.; Stant, A.D.; van Hout, W.J.P.J.; Mersch, P.P.A.; den Boer, J.A. Cost-effectiveness of CBT, SSRI, and CBT+SSRI in the treatment for panic disorder. Acta Psychiatr. Scand. 2014, 129, 286–295. [Google Scholar] [CrossRef]
- Qi, W.; Gevonden, M.; Shalev, A. Efficacy and Tolerability of High-dose Escitalopram in Posttraumatic Stress Disorder. J. Clin. Psychopharmacol. 2017, 37, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.D.; Tharwani, H.M.; Hertzberg, M.A.; Sutherland, S.M.; Connor, K.M.; Davidson, J.R.T. Tolerability of fluoxetine in posttraumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 363–367. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Wilson, M.G.; Thompson, V.L.; Potvin, J.H.; Rampey, A.H. Long-term fluoxetine treatment of bulimia nervosa. Fluoxetine Bulimia Nervosa Research Group. Br. J. Psychiatry J. Ment. Sci. 1995, 166, 660–666. [Google Scholar] [CrossRef]
- Walsh, B.T.; Wilson, G.T.; Loeb, K.L.; Devlin, M.J.; Pike, K.M.; Roose, S.P.; Fleiss, J.; Waternaux, C. Medication and psychotherapy in the treatment of bulimia nervosa. Am. J. Psychiatry 1997, 154, 523–531. [Google Scholar] [PubMed]
- Walsh, B.T.; Fairburn, C.G.; Mickley, D.; Sysko, R.; Parides, M.K. Treatment of bulimia nervosa in a primary care setting. Am. J. Psychiatry 2004, 161, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Milano, W.; Siano, C.; Putrella, C.; Capasso, A. Treatment of bulimia nervosa with fluvoxamine: A randomized controlled trial. Adv. Ther. 2005, 22, 278–283. [Google Scholar] [CrossRef]
- Milano, W.; Petrella, C.; Sabatino, C.; Capasso, A. Treatment of bulimia nervosa with sertraline: A randomized controlled trial. Adv. Ther. 2004, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Blier, P.; Szabo, S.T. Potential mechanisms of action of atypical antipsychotic medications in treatment-resistant depression and anxiety. J. Clin. Psychiatry 2005, 66 (Suppl. 8), 30–40. [Google Scholar]
- Sprouse, J.; Braselton, J.; Reynolds, L.; Clarke, T.; Rollema, H. Activation of postsynaptic 5-HT(1A) receptors by fluoxetine despite the loss of firing-dependent serotonergic input: Electrophysiological and neurochemical studies. Synapse 2001, 41, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Beakley, B.D.; Kaye, A.M.; Kaye, A.D. Tramadol, Pharmacology, Side Effects, and Serotonin Syndrome: A Review. Pain Physician 2015, 18, 395–400. [Google Scholar] [PubMed]
- Lommel, K.M.; Meadows, A.L.; Chopra, N.; Thompson, S. Psychiatric Emergencies. In CURRENT Diagnosis & Treatment: Emergency Medicine, 8th ed.; Stone, C.K., Humphries, R.L., Eds.; McGraw-Hill Education: New York, NY, USA, 2017; Available online: Accessmedicine.mhmedical.com/content.aspx?aid=1176297722 (accessed on 28 February 2021).
- O’Donnell, J.M.; Bies, R.R.; Shelton, R.C. Drug Therapy of Depression and Anxiety Disorders. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13rd ed.; Brunton, L.L., Hilal-Dandan, R., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2017; Available online: Accessmedicine.mhmedical.com/content.aspx?aid=1162535267 (accessed on 28 February 2021).
- Scotton, W.J.; Hill, L.J.; Williams, A.C.; Barnes, N.M. Serotonin Syndrome: Pathophysiology, Clinical Features, Management, and Potential Future Directions. Int. J. Tryptophan Res. 2019, 12, 1178646919873925. [Google Scholar] [CrossRef] [Green Version]
- Bérard, A.; Sheehy, O.; Zhao, J.-P.; Vinet, É.; Bernatsky, S.; Abrahamowicz, M. SSRI and SNRI use during pregnancy and the risk of persistent pulmonary hypertension of the newborn. Br. J. Clin. Pharmacol. 2017, 83, 1126–1133. [Google Scholar] [CrossRef] [Green Version]
- Funk, K.A.; Bostwick, J.R. A comparison of the risk of QT prolongation among SSRIs. Ann. Pharmacother. 2013, 47, 1330–1341. [Google Scholar] [CrossRef]
- Ahrold, T.K.; Meston, C.M. Effects of SNS Activation on SSRI-Induced Sexual Side Effects Differ by SSRI. J. Sex Marital. Ther. 2009, 35, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strachan, D.A. Sexual Disorders. In Women’s Health Across the Lifespan, 2nd ed.; O’Connell, M.B., Smith, J.A., Eds.; McGraw-Hill Education: New York, NY, USA, 2019; Available online: Accessmedicine.mhmedical.com/content.aspx?aid=1178347333 (accessed on 28 February 2021).
- Tanaka, T.; Inoue, T.; Suzuki, K.; Kitaichi, Y.; Masui, T.; Denda, K.; Koyama, T. Clinical relevance of antidepressant-induced activation syndrome: From a perspective of bipolar spectrum disorder. Seishin Shinkeigaku Zasshi 2007, 109, 730–742. [Google Scholar]
- van Harten, J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet. 1993, 24, 203–220. [Google Scholar] [CrossRef]
- Burns, M.J. The pharmacology and toxicology of atypical antipsychotic agents. J. Toxicol. Clin. Toxicol. 2001, 39, 1–14. [Google Scholar] [CrossRef]
- Stille, G.; Lauener, H.; Eichenberger, E. The pharmacology of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(1,4)diazepine (clozapine). Il Farm. Ed. Prat. 1971, 26, 603–625. [Google Scholar]
- de la Chapelle, A.; Kari, C.; Nurminen, M.; Hernberg, S. Clozapine-induced agranulocytosis. A genetic and epidemiologic study. Hum. Genet. 1977, 37, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Naheed, M.; Green, B. Focus on clozapine. Curr. Med. Res. Opin. 2001, 17, 223–229. [Google Scholar] [CrossRef]
- Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the Treatment-Resistant Schizophrenic: A Double-blind Comparison With Chlorpromazine. Arch. Gen. Psychiatry 1988, 45, 789–796. [Google Scholar] [CrossRef]
- Mijovic, A.; MacCabe, J.H. Clozapine-induced agranulocytosis. Ann. Hematol. 2020, 99, 2477–2482. [Google Scholar] [CrossRef]
- Munro, J.; O’Sullivan, D.; Andrews, C.; Arana, A.; Mortimer, A.; Kerwin, R. Active monitoring of 12760 clozapine recipients in the UK and Ireland: Beyond pharmacovigilance. Br. J. Psychiatry 1999, 175, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Moeller, F.; Chen, Y.-W.; Steinberg, J.; Petty, F.; Ripper, G.; Shah, N.; Garver, D. Risk Factors for Clozapine Discontinuation Among 805 Patients in the VA Hospital System. Ann. Clin. Psychiatry 1995, 7, 167–173. [Google Scholar] [CrossRef]
- Conley, R.R.; Kelly, D.L. Management of treatment resistance in schizophrenia. Biol. Psychiatry 2001, 50, 898–911. [Google Scholar] [CrossRef]
- Flanagan, R.J.; Lally, J.; Gee, S.; Lyon, R.; Every-Palmer, S. Clozapine in the treatment of refractory schizophrenia: A practical guide for healthcare professionals. Br. Med Bull. 2020, 135, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Modestin, J.; Dal Pian, D.; Agarwalla, P. Clozapine diminishes suicidal behavior: A retrospective evaluation of clinical records. J. Clin. Psychiatry 2005, 66, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Brunette, M.F.; Akerman, S.C.; Dawson, R.; O’Keefe, C.D.; Green, A.I. An open-label pilot study of quetiapine plus mirtazapine for heavy drinkers with alcohol use disorder. Alcohol 2016, 53, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Drake, R.E.; Xie, H.; McHugo, G.J.; Green, A.I. The effects of clozapine on alcohol and drug use disorders among patients with schizophrenia. Schizophr. Bull. 2000, 26, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, J.Y.; Henricks, A.M.; Kirk, E.; Green, A.I. Unique Effects of Clozapine: A Pharmacological Perspective. Adv. Pharmacol. 2018, 82, 137–162. [Google Scholar]
- National Library of Medicine (US). National Center for Biotechnology Information. PubChem Compound Summary for CID 135398737, Clozapine. 2004. Available online: http://pubchem.ncbi.nlm.nih.gov/compound/Clozapine (accessed on 2 April 2021).
- Seeman, P. Clozapine, a fast-off-D2 antipsychotic. ACS Chem. Neurosci. 2014, 5, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, A.; Lenchner, J.R.; Saadabadi, A. Biochemistry, Dopamine Receptors; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: http://www.ncbi.nlm.nih.gov/books/NBK538242/ (accessed on 2 April 2021).
- Zhang, G.; Stackman, R.W. The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 2015, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.J.; Sorensen, S.M.; Kehne, J.H.; Carr, A.A.; Palfreyman, M.G. The role of 5-HT2A receptors in antipsychotic activity. Life Sci. 1995, 56, 2209–2222. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.F.; Müller, D.J.; Altman, R.B.; Klein, T.E. PharmGKB summary: Clozapine pathway, pharmacokinetics. Pharmacogenet. Genom. 2018, 28, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, G.I.; Petersen, T.J.; Nierenberg, A.A.; Murakami, J.L.; Alpert, J.E.; Rosenbaum, J.F.; Fava, M. Ziprasidone augmentation of selective serotonin reuptake inhibitors (SSRIs) for SSRI-resistant major depressive disorder. J. Clin. Psychiatry 2004, 65, 217–221. [Google Scholar] [CrossRef]
- Zhou, X.; Ravindran, A.V.; Qin, B.; Del Giovane, C.; Li, Q.; Bauer, M.; Liu, Y.; Fang, Y.; Da Silva, T.; Zhang, Y.; et al. Comparative Efficacy, Acceptability, and Tolerability of Augmentation Agents in Treatment-Resistant Depression. J. Clin. Psychiatry 2015, 76, e487–e498. [Google Scholar] [CrossRef] [PubMed]
- Danovich, L.; Weinreb, O.; Youdim, M.B.H.; Silver, H. The involvement of GABAA receptor in the molecular mechanisms of combined selective serotonin reuptake inhibitor-antipsychotic treatment. Int. J. Neuropsychopharmacol. 2011, 14, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Cheon, E.-J.; Lee, K.-H.; Park, Y.-W.; Lee, J.; Koo, B.-H.; Lee, S.-J. Comparison of the Efficacy and Safety of Aripiprazole Versus Bupropion Augmentation in Patients With Major Depressive Disorder Unresponsive to Selective Serotonin Reuptake Inhibitors: A Randomized, Prospective, Open-Label Study. J. Clin. Psychopharmacol. 2017, 37, 193–199. [Google Scholar] [CrossRef]
- Andrade, C. Some augmentation strategies improve outcome but increase discontinuation in adults with treatment-resistant depression. Evid. Based Ment. Health 2016, 19, e7. [Google Scholar] [CrossRef]
- Sepede, G.; De Berardis, D.; Gambi, F.; Campanella, D.; La Rovere, R.; D’Amico, M.; Ferro, F.M. Olanzapine Augmentation in Treatment-Resistant Panic Disorder: A 12-Week, Fixed-Dose, Open-Label Trial. J. Clin. Psychopharmacol. 2006, 26, 45–49. [Google Scholar] [CrossRef]
- Correll, C.U.; Schooler, N.R. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.N.; Bazzano, L.A. Hyponatremia in Association With Second-Generation Antipsychotics: A Systematic Review of Case Reports. Ochsner J. 2018, 18, 230–235. [Google Scholar] [CrossRef]
- Leth-Møller, K.B.; Hansen, A.H.; Torstensson, M.; Andersen, S.E.; Ødum, L.; Gislasson, G.; Torp-Pedersen, C.; Holm, E.A. Antidepressants and the risk of hyponatremia: A Danish register-based population study. BMJ Open 2016, 6, e011200. [Google Scholar] [CrossRef] [Green Version]
- Prior, T.I.; Baker, G.B. Interactions between the cytochrome P450 system and the second-generation antipsychotics. J. Psychiatry Neurosci. 2003, 28, 99–112. [Google Scholar]
- Bertilsson, L.; Carrillo, J.A.; Dahl, M.L.; Llerena, A.; Alm, C.; Bondesson, U.; Lindstrom, L.; De La Rubia, I.R.; Ramos, S.; Benitez, J. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br. J. Clin. Pharmacol. 1994, 38, 471–473. [Google Scholar] [CrossRef] [Green Version]
- Heeringa, M.; Beurskens, R.; Schouten, W.; Verduijn, M.M. Elevated plasma levels of clozapine after concomitant use of fluvoxamine. Pharm. World Sci. 1999, 21, 243–244. [Google Scholar] [CrossRef]
- Chong, S.A.; Tan, C.H.; Lee, H.S. Worsening of psychosis with clozapine and selective serotonin reuptake inhibitor combination: Two case reports. J. Clin. Psychopharmacol. 1997, 17, 68–69. [Google Scholar] [CrossRef]
- Kennedy, W.K.; Jann, M.W.; Kutscher, E.C. Clinically Significant Drug Interactions with Atypical Antipsychotics. CNS Drugs 2013, 27, 1021–1048. [Google Scholar] [CrossRef]
- Haring, C.; Meise, U.; Humpel, C.; Saria, A.; Fleischhacker, W.W.; Hinterhuber, H. Dose-related plasma levels of clozapine: Influence of smoking behaviour, sex and age. Psychopharmacology 1989, 99, S38–S40. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, H.; Anghelescu, I.; Szegedi, A.; Wiesner, J.; Weigmann, H.; Hartter, S.; Hiemke, C. Pharmacokinetic interactions of clozapine with selective serotonin reuptake inhibitors: Differential effects of fluvoxamine and paroxetine in a prospective study. J. Clin. Psychopharmacol. 1998, 18, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.A.; Christensen, M.; Ramos, S.I.; Alm, C.; Dahl, M.-L.; Benítez, J.; Bertilsson, L. Evaluation of Caffeine as an In Vivo Probe for CYP1A2 Using Measurements in Plasma, Saliva, and Urine. Ther. Drug Monit. 2000, 22, 409–417. [Google Scholar] [CrossRef]
- Rostami-Hodjegan, A.; Amin, A.M.; Spencer, E.P.; Lennard, M.S.; Tucker, G.T.; Flanagan, R.J. Influence of dose, cigarette smoking, age, sex, and metabolic activity on plasma clozapine concentrations: A predictive model and nomograms to aid clozapine dose adjustment and to assess compliance in individual patients. J. Clin. Psychopharmacol. 2004, 24, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Frick, A.; Kopitz, J.; Bergemann, N. Omeprazole reduces clozapine plasma concentrations. A case report. Pharmacopsychiatry 2003, 36, 121–123. [Google Scholar]
- Khan, A.Y.; Preskorn, S.H. Examining concentration-dependent toxicity of clozapine: Role of therapeutic drug monitoring. J. Psychiatr. Pract. 2005, 11, 289–301. [Google Scholar] [CrossRef]
- Cohen, L.G.; Chesley, S.; Eugenio, L.; Flood, J.G.; Fisch, J.; Goff, D.C. Erythromycin-induced clozapine toxic reaction. Arch. Intern. Med. 1996, 156, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Hägg, S.; Spigset, O.; Mjörndal, T.; Granberg, K.; Persbo-Lundqvist, G.; Dahlqvist, R. Absence of interaction between erythromycin and a single dose of clozapine. Eur. J. Clin. Pharmacol. 1999, 55, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Raaska, K.; Neuvonen, P.J. Serum concentrations of clozapine and N-desmethylclozapine are unaffected by the potent CYP3A4 inhibitor itraconazole. Eur. J. Clin. Pharmacol. 1998, 54, 167–170. [Google Scholar] [CrossRef]
- von Moltke, L.L.; Greenblatt, D.J.; Granda, B.W.; Grassi, J.M.; Schmider, J.; Harmatz, J.S.; von Moltke, L.L. Nefazodone, meta-chlorophenylpiperazine, and their metabolites in vitro: Cytochromes mediating transformation, and P450-3A4 inhibitory actions. Psychopharmacology 1999, 145, 113–122. [Google Scholar] [CrossRef]
- Taylor, D.; Bodani, M.; Hubbeling, A.; Murray, R. The effect of nefazodone on clozapine plasma concentrations. Int. Clin. Psychopharmacol. 1999, 14, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; de Leon, J. Metabolic Drug Interactions with Newer Antipsychotics: A Comparative Review. Basic Clin. Pharmacol. Toxicol. 2007, 100, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Ring, B.J.; Binkley, S.N.; Vandenbranden, M.; Wrighton, S.A. In vitro interaction of the antipsychotic agent olanzapine with human cytochromes P450 CYP2C9, CYP2C19, CYP2D6 and CYP3A. Br. J. Clin. Pharmacol. 1996, 41, 181–186. [Google Scholar] [CrossRef]
- Shin, J.G.; Soukhova, N.; Flockhart, D.A. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: Preferential inhibition of CYP2D6. Drug Metab. Dispos. 1999, 27, 1078–1084. [Google Scholar]
- Spina, E.; de Leon, J. Clinically relevant interactions between newer antidepressants and second-generation antipsychotics. Expert Opin. Drug Metab. Toxicol. 2014, 10, 721–746. [Google Scholar] [CrossRef]
- Centorrino, F.; Baldessarini, R.J.; Frankenburg, F.R.; Kando, J.; Volpicelli, S.A.; Flood, J.G. Serum levels of clozapine and norclozapine in patients treated with selective serotonin reuptake inhibitors. Am. J. Psychiatry 1996, 153, 820–822. [Google Scholar]
- Hefner, G.; Shams, M.E.E.; Unterecker, S.; Falter, T.; Hiemke, C. Inflammation and psychotropic drugs: The relationship between C-reactive protein and antipsychotic drug levels. Psychopharmacology 2016, 233, 1695–1705. [Google Scholar] [CrossRef]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef]
- Tio, N.; Schulte, P.F.J.; Martens, H.J.M. Clozapine Intoxication in COVID-19. Am. J. Psychiatry 2021, 178, 123–127. [Google Scholar] [CrossRef]
- Thompson, D.; Delorme, C.M.; White, R.F.; Honer, W.G. Elevated clozapine levels and toxic effects after SARS-CoV-2 vaccination. J. Psychiatry Neurosci. JPN 2021, 46, E210–E211. [Google Scholar] [CrossRef] [PubMed]
- Ben Dhia, A.; Hamzaoui, S.; Mouaffak, F. Epidémie au nouveau coronavirus (SARS-CoV-2) et prescription de la clozapine: Quelles mesures? Pourquoi? L’Encephale 2020, 46, S123–S124. [Google Scholar] [CrossRef] [PubMed]
- Brøsen, K.; Skjelbo, E.; Rasmussen, B.B.; Poulsen, H.E.; Loft, S. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem. Pharmacol. 1993, 45, 1211–1214. [Google Scholar] [CrossRef]
- Szegedi, A.; Anghelescu, I.; Wiesner, J.; Schlegel, S.; Weigmann, H.; Härtter, S.; Hiemke, C.; Wetzel, H. Addition of low-dose fluvoxamine to low-dose clozapine monotherapy in schizophrenia: Drug monitoring and tolerability data from a prospective clinical trial. Pharmacopsychiatry 1999, 32, 148–153. [Google Scholar] [CrossRef]
- Baumann, P.; Rochat, B. Comparative pharmacokinetics of selective serotonin reuptake inhibitors: A look behind the mirror. Int. Clin. Psychopharmacol. 1995, 10, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Nemeroff, C.B.; Devane, C.L.; Pollock, B.G. Newer antidepressants and the cytochrome P450 system. Am. J. Psychiatry 1996, 153, 311–320. [Google Scholar] [PubMed]
- Dequardo, J.R.; Roberts, M. Elevated clozapine levels after fluvoxamine initiation. Am. J. Psychiatry 1996, 153, 840b–841b. [Google Scholar]
- Dumortier, G.; Lochu, A.; De Melo, P.C.; Ghribi, O.; Roche-Rabreau, D.; Degrassat, K.; Desce, J.M. Elevated clozapine plasma concentrations after fluvoxamine initiation. Am. J. Psychiatry 1996, 153, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.L.; Lane, H.Y.; Lin, S.K.; Chen, K.P.; Chang, W.H. Adjunctive fluvoxamine inhibits clozapine-related weight gain and metabolic disturbances. J. Clin. Psychiatry 2004, 65, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Haring, C.; Neudorfer, C.; Schwitzer, J.; Hummer, M.; Saria, A.; Hinterhuber, H.; Fleischhacker, W.W. EEG alterations in patients treated with clozapine in relation to plasma levels. Psychopharmacology 1994, 114, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Freudenreich, O.; Weiner, R.D.; McEvoy, J.P. Clozapine-induced electroencephalogram changes as a function of clozapine serum levels. Biol. Psychiatry 1997, 42, 132–137. [Google Scholar] [CrossRef]
- Spina, E.; Avenoso, A.; Salemi, M.; Facciola, G.; Scordo, M.G.; Ancione, M.; Madia, A. Plasma concentrations of clozapine and its major metabolites during combined treatment with paroxetine or sertraline. Pharmacopsychiatry 2000, 33, 213–217. [Google Scholar] [CrossRef]
- Avenoso, A.; Facciolà, G.; Campo, G.M.; Fazio, A.; Spina, E. Determination of clozapine, desmethylclozapine and clozapine N-oxide in human plasma by reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Appl. 1998, 714, 299–308. [Google Scholar] [CrossRef]
- Jeppesen, U.; Gram, L.F.; Vistisen, K.; Loft, S.; Poulsen, H.E.; Brøsen, K. Dose dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol. 1996, 51, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Sindrup, S.H.; Brøsen, K.; Gram, L.F. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: Nonlinearity and relation to the sparteine oxidation polymorphism. Clin. Pharmacol. Ther. 1992, 51, 288–295. [Google Scholar] [CrossRef]
- Bablenis, E.; Weber, S.S.; Wagner, R.L. Clozapine: A novel antipsychotic agent. DICP Annals Pharmacother. 1989, 23, 109–115. [Google Scholar] [CrossRef] [PubMed]
- DeVane, C.L. Pharmacokinetics of the newer antidepressants: Clinical relevance. Am. J. Med. 1994, 97, S13–S23. [Google Scholar] [CrossRef]
- Pollock, B.G. Recent developments in drug metabolism of relevance to psychiatrists. Harv. Rev. Psychiatry 1994, 2, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Popli, A.; Baldessarini, R.J.; Cole, J.O. Interactions of Serotonin Reuptake Inhibitors with Tricyclic Antidepressants-Reply. Arch. General Psychiatry 1995, 52, 666–667. [Google Scholar]
- Slaughter, R.L.; Edwards, D.J. Recent Advances: The Cytochrome P450 Enzymes. Ann. Pharmacother. 1995, 29, 619–624. [Google Scholar] [CrossRef]
- Gorski, J.; Jones, D.R.; Wrighton, S.A.; Hall, S.D. Characterization of dextromethorphan N-demethylation by human liver microsomes. Biochem. Pharmacol. 1994, 48, 173–182. [Google Scholar] [CrossRef]
- Jerling, M.; Lindstrm, L.; Bondesson, U.; Bertilsson, L. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: Evidence from a therapeutic drug monitoring service. Ther. Drug Monit. 1994, 16, 368–374. [Google Scholar] [CrossRef]
- Spina, E.; Avenoso, A.; Facciolà, G.; Fabrazzo, M.; Monteleone, P.; Maj, M.; Caputi, A.P. Effect of fluoxetine on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenia. Int. Clin. Psychopharmacol. 1998, 13, 141–145. [Google Scholar] [CrossRef]
- Ferslew, K.E.; Hagardorn, A.N.; Harlan, G.C.; McCormick, W.F. A fatal drug interaction between clozapine and fluoxetine. J. Forensic Sci. 1998, 43, 1082–1085. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S.; Grace, J.J.; Pato, M.T.; Priest, B. Sertraline in the treatment of clozapine-induced obsessive-compulsive behavior. Am. J. Psychiatry 1998, 155, 1626. [Google Scholar] [CrossRef]
- Baker, R.W.; Chengappa, K.N.R.; Baird, J.W.; Steingard, S.; Christ, M.A.G.; Schooler, N.R. Emergence of obsessive compulsive symptoms during treatment with clozapine. J. Clin. Psychiatry 1992, 53, 439–442. [Google Scholar] [PubMed]
- Taylor, D.; Ellison, Z.; Ementon Shaw, L.; Wickham, H.; Murray, R. Co-administration of citalopram and clozapine: Effect on plasma clozapine levels. Int. Clin. Psychopharmacol. 1998, 13, 19–21. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Drugs Studied/Objective | Groups Studied and Intervention | Results and Findings | Conclusions |
---|---|---|---|---|
Szegedi A. et al. (1999) [107] | To determine if the concomitant use of clozapine + fluvoxamine (SSRI) improves therapeutic efficacy in schizophrenic patients who experience negative symptoms with clozapine. | The study examined serum concentrations for clozapine and coadministration of fluvoxamine. Patients were treated for 6 weeks or more. Initial treatment was a monotherapy with clozapine (2.5–3.5 mg/kg; 125–250 mg/day), followed with an add-on therapy of 50 mg of fluvoxamine. | Increase in serum concentrations of clozapine and its metabolites observed following addition of fluvoxamine to treatment regimen (Day 7: clozapine serum concentrations increased 2.3-fold, N-desmethylclozapine increased 2.1-fold; Day 14: clozapine serum concentrations increased 2.6-fold, N-desmethylclozapine increased 2.6-fold). No significant changes in adverse effects were reported (frequency, severity) despite increased clozapine serum concentrations with concomitant drug administration. | Concomitant use of clozapine and fluvoxamine was well tolerated, critical side effects absent. Psychopathology improvement observed in clozapine monotherapy and continued after addition of fluvoxamine. Combined treatment should only be prescribed under close monitoring of clozapine serum concentrations. |
Mong-Liang L et al. (2004) [112] | To demonstrate the effects of fluvoxamine (SSRI) on clozapine-related weight gain, hyperglycemia, and lipid abnormalities. | Treatment-resistant inpatients with a DSM-IV schizophrenia diagnosis (n = 68) randomly assigned to 2 treatment groups for 12 weeks; monotherapy group (n = 34) received clozapine (≤600 mg/day), coadministration group (n = 34) received fluvoxamine (50 mg/day) plus low-dose clozapine (≤250 mg/day). | Monotherapy group showed significant increase (p < 0.5) in body weight, BMI, serum glucose after treatment than at baseline; increase also seen in coadministration group but not statistically significant. At week 12, monotherapy group had significantly higher glucose (p = 0.035), triglyceride (p = 0.041), and norclozapine (p = 0.009) compared to coadministration group. | Results suggest concomitant use of clozapine and fluvoxamine can attenuate weight gain and metabolic disturbances. Plasma levels of norclozapine, but not clozapine, found to be associated with increases in weight, serum glucose, and triglyceride levels. |
Taylor D et al. (1997) [130] | To determine the therapeutic efficacy of adding citalopram (SSRI, antidepressant) to a clozapine treatment regimen in patients with schizophrenia | Initial treatment: monotherapy of clozapine administered at constant dose (500–600 mg/day) for 2 weeks; baseline clozapine plasma levels recorded. Citalopram (20 mg/day) was then added to the treatment regimen for a minimum of 2 weeks. Plasma clozapine levels were obtained on day 7 and day 14 of concomitant drug use. Samples drawn 12 h. after night-time dose of clozapine. | Clozapine plasma levels increased in only one participant (patient 2). Plasma levels remained unchanged in patient 4 but decreased in the remaining three patients (patients 1, 3, 5). Overall, small decreases in plasma clozapine and norclozapine levels observed; ratio of clozapine:norclozapine remained much the same. | Citalopram had no clear effect on clozapine metabolism; important distinction from other SSRI’s that do interfere with clozapine metabolism. Based on limit evidence, study finds citalopram to be the potential SSRI of choice in those taking clozapine. Larger study needed to increase significance of results. |
Spina. E et al. (2000) [115] | To determine the therapeutic efficacy of 2 SSRIs, paroxetine and sertraline, when added to a clozapine treatment regimen in patients with schizophrenia, ensuring no drug interactions exist that would hinder the metabolism of clozapine. | 17 outpatients selected: 11 males 6 females (n = 17), ages 29–55 years old, and given DSM IV diagnosis of schizophrenia (n = 13) or schizoaffective disorder (n = 4). Patients treated with constant dose of clozapine for minimum of 3 months, then either 20–40 mg/day of paroxetine (n = 9) or 50–100 mg/day of sertraline (n = 8) was added to daily treatment regimen. Steady-state plasma concentrations of clozapine, norclozapine and clozapine N-oxide assayed by HPLC. | Paroxetine found to cause a significant increase in clozapine plasma levels (p < 0.01): baseline = 337 ± 83 ng/mL, week 3 = 441 ± 141 ng/mL. Paroxetine also found to significantly increase norclozapine plasma levels (p < 0.05). Paroxetine did not, however, alter ratios between clozapine and its metabolites. On the other hand, sertraline did not significantly modify mean plasma concentrations of clozapine and its metabolites. | Clozapine coadministration with paroxetine or sertraline was well tolerated. Findings suggest metabolism of clozapine is not affected by sertraline, while paroxetine, a potent inhibitor of CYP2D6, does have an effect and appears to inhibit metabolism of clozapine. While sertraline may be safely added to patients on maintenance treatment with clozapine, careful clinical observation and monitoring of a patient is recommended when paroxetine is co-administered with clozapine. |
Centorrino, F et al. (1996) [100] | To determine the therapeutic efficacy of 3 SSRIs, fluvoxamine, paroxetine, and sertraline, when added to a clozapine treatment regimen in patients with schizophrenia, ensuring no drug interactions exist that would hinder the metabolism of clozapine. | Study assessed serum concentrations of clozapine and norclozapine in 80 psychiatric patients, matched for age and clozapine dose, given clozapine alone (mean dose = 279 mg/day) or in combination with one of the three SSRIs: fluoxetine (mean dose = 39.3 mg/day), paroxetine (mean dose = 31.2 mg/day), or sertraline (mean dose = 92.5 mg/day). | In patients taking SSRIs, the sum of clozapine and norclozapine plasma levels averaged approximately 43% higher than patients taking only clozapine. Findings also suggest the risk of levels higher than 1000 ng/mL was 10-fold greater (25%), in patients taking any of the 3 SSRIs, with minor differences between the individual SSRIs. | SSRIs can increase circulating levels of clozapine and norclozapine to potentially toxic levels. Patients should be monitored closely when taking clozapine in combination with an SSRI, particularly especially when the daily clozapine dose exceeds 300 mg or 3/5 mg/kg. |
Rahman, MS et al. (1998) [128] | To review a case report describing treatment of clozapine-induced obsessive-compulsive disorder (OCD) with sertraline, which avoids liver enzyme competition. | Patient was a 39-year-old white male with a 20-year history of paranoid schizophrenia; previous clozapine treatment regimen significantly improved psychotic symptoms, but patient developed severe OCD behavior 2 years into treatment and forced to discontinue clozapine therapy. Initial treatment (325 mg/day clozapine, 50 mg/day fluvoxamine). Fluvoxamine discontinued, substituted for sertraline (100 mg b.i.d.) and raised clozapine to 475 mg/day. | The patient’s OCD behavior did improve with fluvoxamine (150 mg/day), however, the SSRI caused clozapine plasma levels to rise over 700 ng/mL. Fluvoxamine was replaced with sertraline (100 mg b.i.d.). Sertraline was more effective compared to fluvoxamine and patient’s psychotic and obsessive-compulsive symptoms were well controlled. Sertraline did not affect clozapine plasma level or efficacy. | SSRIs can effectively treat clozapine-induced ODC behaviors. Fluvoxamine was effective in treating OCD but caused significant increases in clozapine plasma levels. Sertraline was also found to be effective and did not cause significant increases in clozapine plasma levels. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edinoff, A.N.; Fort, J.M.; Woo, J.J.; Causey, C.D.; Burroughs, C.R.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations. Neurol. Int. 2021, 13, 445-463. https://doi.org/10.3390/neurolint13030044
Edinoff AN, Fort JM, Woo JJ, Causey CD, Burroughs CR, Cornett EM, Kaye AM, Kaye AD. Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations. Neurology International. 2021; 13(3):445-463. https://doi.org/10.3390/neurolint13030044
Chicago/Turabian StyleEdinoff, Amber N., Juliana M. Fort, Joshua J. Woo, Christopher D. Causey, Caroline R. Burroughs, Elyse M. Cornett, Adam M. Kaye, and Alan D. Kaye. 2021. "Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations" Neurology International 13, no. 3: 445-463. https://doi.org/10.3390/neurolint13030044
APA StyleEdinoff, A. N., Fort, J. M., Woo, J. J., Causey, C. D., Burroughs, C. R., Cornett, E. M., Kaye, A. M., & Kaye, A. D. (2021). Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations. Neurology International, 13(3), 445-463. https://doi.org/10.3390/neurolint13030044