Metabolic and Anthropometric Influences on Nerve Conduction Parameters in Patients with Peripheral Neuropathy: A Retrospective Chart Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Population
2.2. Procedural Details and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Baseline Cohort Demographics
3.2. Univariate Correlation
3.3. Multivariate Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tapp, R.J.; Shaw, J.E.; De Courten, M.P.; Dunstan, D.W.; Welborn, T.A.; Zimmet, P.Z. Foot complications in Type 2 diabetes: An Australian population-based study. Diabet. Med. 2003, 20, 105–113. [Google Scholar] [CrossRef]
- Pollack, A.; Harrison, C.; Henderson, J.; Britt, H. Neuropathic pain. Aust. Fam. Phys. 2013, 42, 91. [Google Scholar]
- Boulanger, L.; Zhao, Y.; Bao, Y.; Russell, M.W. A retrospective study on the impact of comorbid depression or anxiety on healthcare resource use and costs among diabetic neuropathy patients. BMC Health Serv. Res. 2009, 9, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Jain, S.; Raison, C.L.; Maletic, V. Painful diabetic neuropathy is more than pain alone: Examining the role of anxiety and depression as mediators and complicators. Curr. Diab. Rep. 2011, 11, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Huynh, W.; Kiernan, M.C. Nerve conduction studies. Aust. Fam. Physician 2011, 40, 693–697. [Google Scholar] [PubMed]
- Huang, C.C.; Lee, C.L.; Huang, M.H.; Chen, T.W.; Weng, M.C.; Tseng, H.C. Effect of glycemic control on electrophysiologic changes of diabetic neuropathy in type 2 diabetic patients. Kaohsiung J. Med. Sci. 2005, 21, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Landau, M.E.; Barner, K.C.; Campbell, W.W. Effect of body mass index on ulnar nerve conduction velocity, ulnar neuropathy at the elbow, and carpal tunnel syndrome. Muscle Nerve 2005, 32, 360–363. [Google Scholar] [CrossRef]
- Tkac, I.; Bril, V. Glycemic control is related to the electrophysiologic severity of diabetic peripheral sensorimotor polyneuropathy. Diabetes Care 1998, 21, 1749–1752. [Google Scholar] [CrossRef]
- Munisekhar, K.; Parvathi, G.; Padmaja, A.; Boddeti, R.K. Effect of glycemic control on nerve conduction studies. Int. J. Biol. Med. Res. 2013, 4, 6. [Google Scholar]
- Pawar, S.M.; Taksande, A.B.; Singh, R. Effect of body mass index on parameters of nerve conduction study in Indian population. Indian J. Physiol. Pharmacol. 2012, 56, 88–93. [Google Scholar]
- Jagga, M.; Lehri, A.; Verma, S.K. Effect of aging and anthropometric measurements on nerve conduction properties–A Review. J. Exerc. Sci. Physiother. 2011, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rivner, M.H.; Swift, T.R.; Malik, K. Influence of age and height on nerve conduction. Muscle Nerve 2001, 24, 1134–1141. [Google Scholar] [CrossRef]
- Stetson, D.S.; Albers, J.W.; Silverstein, B.A.; Wolfe, R.A. Effects of age, sex, and anthropometric factors on nerve conduction measures. Muscle Nerve 1992, 15, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, B.; Adybeig, B.; Rayegani, M.; Yasami, S.; Behshad, V. Uremic neuropathy and the analysis of electrophysiological changes. Electromyogr. Clin. Neurophysiol. 2001, 41, 107–115. [Google Scholar] [PubMed]
- Krishnan, A.V.; Phoon, R.K.; Pussell, B.A.; Charlesworth, J.A.; Bostock, H.; Kiernan, M.C. Altered motor nerve excitability in end-stage kidney disease. Brain 2005, 128, 2164–2174. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, S.; Voipio-Pulkki, L.M.; Erkinjuntti, M.; Asola, M.; Falck, B. Does dialysis therapy improve autonomic and peripheral nervous system abnormalities in chronic uraemia? J. Intern. Med. 2000, 248, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Makinodan, A.; Kubo, T.; Hayashida, T.; Hirasawa, Y. Electrophysiological course of uraemic neuropathy in haemodialysis patients. Postgrad. Med. J. 2001, 77, 451–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, B.V.; Andrea, P.; Gómez, B. Uraemic neuropathy: A review. Int. J. Genet. Mol. Biol. 2012, 3, 155–160. [Google Scholar]
- Shin, J.O. Clinical Electromyography: Nerve Conduction Studies; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003. [Google Scholar]
- Brigden, M.L. Clinical utility of the erythrocyte sedimentation rate. Am. Fam. Physician 1999, 60, 1443–1450. [Google Scholar]
- Jalilzadeh, S.; Bahrami, A.; Eftekhar, A.B.; Mobaseri, M.; Pezeshki, Z. Peripheral Nerve Function in Subclinical Hypothyroidism: A Case-Control Study. Int. J. Endocrinol. Metab. 2006, 4, 78–83. [Google Scholar]
- Ozata, M.; Ozkardes, A.; Corakci, A.; Gundogan1, M.A. Subclinical hypothyroidism does not lead to alterations either in peripheral nerves or in brainstem auditory evoked potentials (BAEPs). Thyroid 1995, 5, 201–205. [Google Scholar] [CrossRef]
- Kececi, H.; Degirmenci, Y. Hormone replacement therapy in hypothyroidism and nerve conduction study. Neurophysiol. Clin. 2006, 36, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, G.; Karlikaya, G.; Tanridağ, T.; Us, Ö.; Akyüz, G. Nerve conduction studies, sep and blink reflex studies in recently diagnosed, untreated thyroid disease patients. J. Neurol. Sci. 2007, 24, 7–15. [Google Scholar]
- Buschbacher, R.M. Body mass index effect on common nerve conduction study measurements. Muscle Nerve 1998, 21, 1398–1404. [Google Scholar] [CrossRef]
Composite Variables | Nerves Measured |
---|---|
SMNV—Sum of Motor Nerve Velocities | Motor: Median + Ulnar + Tibial Nerve velocities |
SMNA—Sum of Motor Nerve Amplitudes | Motor: Median + Ulnar + Tibial Nerve amplitudes |
SSNV—Sum of Sensory Nerve Velocities | Sensory: Median + Ulnar + Sural Nerve velocities |
SSNA—Sum of Sensory Nerve Amplitudes | Sensory: Median + Ulnar + Sural Nerve amplitudes |
SULSA—Sum of Upper Limb Sensory Amplitudes | Sensory: Median + Ulnar Nerve amplitudes |
SULSV—Sum of Upper Limb Sensory Velocities | Sensory: Median + Ulnar Nerve velocities |
SULMA—Sum of Upper Limb Motor Amplitudes | Motor: Median + Ulnar Nerve amplitudes |
SULMV—Sum of Upper Limb Motor Velocities | Motor: Median + Ulnar Nerve velocities |
SULSMV—Sum of Upper Limb Sensorimotor Velocities | Sensory + Motor: Median+ Ulnar Nerve velocities |
SLLMA—Sum of Lower Limb Motor Amplitudes | Motor: Tibial + Superficial Peroneal Nerve amplitudes |
SLLMV—Sum of Lower Limb Motor Velocities | Motor: Tibial + Superficial Peroneal Nerve velocities |
SLLSMV—Sum of Lower Limb Sensorimotor Velocities | Sensory: Sural + Motor: Tibial + Superficial Peroneal Nerve velocities |
Variables (n = 120) | |
---|---|
Sex (Male/Female, % Male) | (65/55, 54.17%) |
Age (yr) (n = 120) | 62.00, (48.00–68.00) |
Height (m) (n = 120) | 1.71, (1.64–1.78) |
Weight (kg) (n = 120) | 77.55, (68.08–93.45) |
BMI (kg/m2) (n = 120)Overweight/Obese (n = 82) | 27.60, (23.61–31.30) 68% |
Diabetic HbA1c (%)(n = 87) Duration of DM (years) | 6.20, (5.50–7.60) 9 (2–17) |
Urea (mmol/L) (n = 117) | 5.50, (4.35–9.00) |
ESR (mm/hr) (n = 96) | 12.00, (8.00–30.75) |
TSH (mIU/L) (n = 111) | 1.40, (1.00–2.08) |
Vit B12 (ng/mL) | 238 (182–348) |
Chronic Kidney Disease (n = 16) | 14.0% |
Sum of Motor Nerve Velocities | 184 (170–200) |
Sum of Motor Nerve Amplitudes | 25 (20–33) |
Sum of Sensory Nerve Velocities | 141 (96–163) |
Sum of Sensory Nerve Amplitudes | 37 (17–66) |
Sum of Upper Limb Sensory Nerve Amplitudes | 32 (16–59) |
Sum of Upper Limb Sensory Nerve Velocities | 98 (84–111) |
Sum of Upper Limb Motor Nerve Amplitudes | 16 (13–18) |
Sum of Upper Limb Motor Nerve Velocities | 104 (98–112) |
Sum of Upper Limb Sensorimotor Nerve Velocity | 202 (183–222) |
Sum of Lower Limb Motor Nerve Amplitudes | 10 (6–16) |
Sum of Lower Limb Motor Nerve Velocities | 80 (73–88) |
Sum of Lower Limb Sensorimotor Nerve Velocity | 123 (81–138) |
SMNV | SMNA | SSNV | SSNA | SULSA | SULSV | SULMA | SULMV | SULSMV | SLLMA | SLLMV | SLLSMV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | −0.358 *** | −0.380 *** | −0.326 *** | −0.456 *** | −0.415 *** | −0.315 *** | −0.280 *** | −0.360 *** | −0.360 *** | −0.383 *** | −0.298 *** | −0.336 *** |
BMI | 0.085 | −0.095 | 0.081 | −0.057 | −0.076 | 0.064 | −0.064 | 0.077 | 0.090 | −0.115 | 0.074 | 0.087 |
ESR | −0.266 ** | −0.336 *** | −0.233 * | −0.206 | −0.195 | −0.212 * | −0.260 ** | −0.193 | −0.226 * | −0.335 *** | −0.281 ** | −0.274 ** |
HbA1c | −0.296 *** | −0.241 * | −0.21 | −0.233 * | −0.218 * | −0.259 * | −0.299 ** | −0.329 *** | −0.285 ** | −0.182 | −0.275 ** | −0.236 * |
TSH | −0.120 | −0.214 * | −0.108 | −0.106 | −0.095 | −0.133 | −0.123 | −0.100 | −0.140 | −0.251 ** | −0.125 | −0.099 |
Urea | −0.363 *** | −0.394 *** | −0.217 * | −0.296 *** | −0.272 ** | −0.162 | −0.262 *** | −0.236 ** | −0.210 * | −0.387 *** | −0.384 *** | −0.344 *** |
Age | ESR | HbA1c | TSH | Urea | |
---|---|---|---|---|---|
SMNV | −0.217 * | −0.032 | −0.356 *** | −0.181 | −0.319 ** |
SMNA | −0.250 * | −0.137 | −0.247 * | −0.193 | −0.218 |
SSNV | −0.244 * | −0.035 | −0.277 * | −0.116 | −0.102 |
SSNA | −0.516 *** | 0.001 | −0.292 ** | −0.092 | −0.064 |
Age | ESR | HbA1c | TSH | Urea | |
---|---|---|---|---|---|
SULSV | −0.206 | −0.018 | −0.246 * | −0.084 | −0.057 |
SULSA | −0.495 *** | 0.001 | −0.265 * | −0.086 | −0.041 |
SULMV | −0.379 *** | 0.071 | −0.439 *** | −0.112 | −0.107 |
SULMA | −0.235 | −0.088 | −0.332 *** | −0.123 | −0.153 |
SULSMV | −0.283 * | 0.011 | −0.322 ** | −0.114 | −0.082 |
SLLMV | −0.070 | −0.124 | −0.251 * | −0.181 | −0.398 *** |
SLLMA | −0.245 * | −0.120 | −0.157 | −0.204 | −0.221 |
SLLSMV | −0.187 | −0.050 | −0.286 ** | −0.145 | −0.309 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ly, D.H.M.; Vangaveti, V.N.; Urkude, R.; Biros, E.; Malabu, U.H. Metabolic and Anthropometric Influences on Nerve Conduction Parameters in Patients with Peripheral Neuropathy: A Retrospective Chart Analysis. Neurol. Int. 2021, 13, 166-174. https://doi.org/10.3390/neurolint13020016
Ly DHM, Vangaveti VN, Urkude R, Biros E, Malabu UH. Metabolic and Anthropometric Influences on Nerve Conduction Parameters in Patients with Peripheral Neuropathy: A Retrospective Chart Analysis. Neurology International. 2021; 13(2):166-174. https://doi.org/10.3390/neurolint13020016
Chicago/Turabian StyleLy, Daniel H M, Venkat N. Vangaveti, Ravindra Urkude, Erik Biros, and Usman H Malabu. 2021. "Metabolic and Anthropometric Influences on Nerve Conduction Parameters in Patients with Peripheral Neuropathy: A Retrospective Chart Analysis" Neurology International 13, no. 2: 166-174. https://doi.org/10.3390/neurolint13020016
APA StyleLy, D. H. M., Vangaveti, V. N., Urkude, R., Biros, E., & Malabu, U. H. (2021). Metabolic and Anthropometric Influences on Nerve Conduction Parameters in Patients with Peripheral Neuropathy: A Retrospective Chart Analysis. Neurology International, 13(2), 166-174. https://doi.org/10.3390/neurolint13020016