Brugada Syndrome and GPD1L: Definite Genotype-Phenotype Association?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popa, I.P.; Serban, D.N.; Maranduca, M.A.; Serban, I.L.; Tamba, B.I.; Tudorancea, I. Brugada Syndrome: From Molecular Mechanisms and Genetics to Risk Stratification. Int. J. Mol. Sci. 2023, 24, 3328. [Google Scholar] [CrossRef] [PubMed]
- Wilde, A.A.; Semsarian, C.; Márquez, M.F.; Shamloo, A.S.; Ackerman, M.J.; Ashley, E.A.; Sternick, E.B.; Barajas-Martinez, H.; Behr, E.R.; Bezzina, C.R.; et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Europace 2022, 24, 1307–1367. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, O.; Sarquella-Brugada, G.; Fernandez-Falgueras, A.; Cesar, S.; Coll, M.; Mates, J.; Arbelo, E.; Perez-Serra, A.; del Olmo, B.; Jordá, P.; et al. Genetic interpretation and clinical translation of minor genes related to Brugada syndrome. Hum. Mutat. 2019, 40, 749–764. [Google Scholar] [CrossRef]
- Valdivia, C.R.; Ueda, K.; Ackerman, M.J.; Makielski, J.C. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1446–H1452. [Google Scholar] [CrossRef]
- Weiss, R.; Barmada, M.M.; Nguyen, T.; Seibel, J.S.; Cavlovich, D.; Kornblit, C.A.; Angelilli, A.; Villanueva, F.; McNamara, D.M.; London, B. Clinical and molecular heterogeneity in the Brugada syndrome: A novel gene locus on chromosome 3. Circulation 2002, 105, 707–713. [Google Scholar] [CrossRef]
- London, B.; Michalec, M.; Mehdi, H.; Zhu, X.; Kerchner, L.; Sanyal, S.; Viswanathan, P.C.; Pfahnl, A.E.; Shang, L.L.; Madhusudanan, M.; et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 2007, 116, 2260–2268. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yang, S.; Nykamp, K.; Garcia, J.; Lincoln, S.E.; Topper, S.E. Pathogenic variant burden in the ExAC database: An empirical approach to evaluating population data for clinical variant interpretation. Genome Med. 2017, 9, 13. [Google Scholar] [CrossRef]
- Abou Tayoun, A.N.; Pesaran, T.; DiStefano, M.T.; Oza, A.; Rehm, H.L.; Biesecker, L.G.; Harrison, S.M.; ClinGen Sequence Variant Interpretation Working Group. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 2018, 39, 1517–1524. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Byrne, A.B.; Harrison, S.M.; Pesaran, T.; Schäffer, A.A.; Shirts, B.H.; Tavtigian, S.V.; Rehm, H.L. ClinGen guidance for use of the PP1/BS4 co-segregation and PP4 phenotype specificity criteria for sequence variant pathogenicity classification. Am. J. Hum. Genet. 2024, 111, 24–38. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Harrison, S.M.; ClinGen Sequence Variant Interpretation Working, G. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet. Med. 2018, 20, 1687–1688. [Google Scholar] [CrossRef] [PubMed]
- Pejaver, V.; Byrne, A.B.; Feng, B.J.; Pagel, K.A.; Mooney, S.D.; Karchin, R.; O’Donnell-Luria, A.; Harrison, S.M.; Tavtigian, S.V.; Greenblatt, M.S.; et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am. J. Hum. Genet. 2022, 109, 2163–2177. [Google Scholar] [CrossRef] [PubMed]
- Hedley, P.L.; Jorgensen, P.; Schlamowitz, S.; Moolman-Smook, J.; Kanters, J.K.; Corfield, V.A.; Christiansen, M. The genetic basis of Brugada syndrome: A mutation update. Hum. Mutat. 2009, 30, 1256–1266. [Google Scholar] [CrossRef]
- Van Norstrand, D.W.; Valdivia, C.R.; Tester, D.J.; Ueda, K.; London, B.; Makielski, J.C.; Ackerman, M.J. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation 2007, 116, 2253–2259. [Google Scholar] [CrossRef]
- Makiyama, T.; Akao, M.; Haruna, Y.; Tsuji, K.; Doi, T.; Ohno, S.; Nishio, Y.; Kita, T.; Horie, M. Mutation analysis of the glycerol-3 phosphate dehydrogenase-1 like (GPD1L) gene in Japanese patients with Brugada syndrome. Circ. J. 2008, 72, 1705–1706. [Google Scholar] [CrossRef]
- Paludan-Müller, C.; Ghouse, J.; Vad, O.B.; Herfelt, C.B.; Lundegaard, P.; Ahlberg, G.; Schmitt, N.; Svendsen, J.H.; Haunsø, S.; Bundgaard, H.; et al. Reappraisal of variants previously linked with sudden infant death syndrome: Results from three population-based cohorts. Eur. J. Hum. Genet. 2019, 27, 1427–1435. [Google Scholar] [CrossRef]
- Chen, C.J.; Juang, J.J.; Lin, L.Y.; Liu, Y.B.; Ho, L.T.; Yu, C.C.; Huang, H.C.; Lin, T.T.; Liao, M.C.; Chen, J.J.; et al. Gender difference in clinical and genetic characteristics of Brugada syndrome: SADS-TW BrS registry. QJM Mon. J. Assoc. Physicians 2019, 112, 343–350. [Google Scholar] [CrossRef]
- Fan, J.; Yao, F.J.; Cheng, Y.J.; Ji, C.C.; Chen, X.M.; Wu, S.H. Early repolarization pattern associated with coronary artery disease and increased the risk of cardiac death in acute myocardium infarction. Ann Noninvasive Electrocardiol. 2020, 25, e12768. [Google Scholar] [CrossRef]
- Fan, J.; Ji, C.C.; Cheng, Y.J.; Yao, H.; Chen, X.M.; Zheng, Z.H.; Wu, S. A novel mutation in GPD1-L associated with early repolarization syndrome via modulation of cardiomyocyte fast sodium currents. Int. J. Mol. Med. 2020, 45, 947–955. [Google Scholar] [CrossRef]
- Liu, M.; Sanyal, S.; Gao, G.; Gurung, I.S.; Zhu, X.; Gaconnet, G.; Kerchner, L.J.; Shang, L.L.; Huang, C.L.-H.; Grace, A.; et al. Cardiac Na+ current regulation by pyridine nucleotides. Circ. Res. 2009, 105, 737–745. [Google Scholar] [CrossRef]
- Hasdemir, C.; Payzin, S.; Kocabas, U.; Sahin, H.; Yildirim, N.; Alp, A.; Aydin, M.; Pfeiffer, R.; Burashnikov, E.; Wu, Y.; et al. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm. 2015, 12, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, E.; Gréen, A.; Gustavsson, P.; Liedén, A.; Nordenskjöld, M.; Papadogiannakis, N.; Pettersson, K.; Nilsson, D.; Jonasson, J.; Iwarsson, E. Identification of putative pathogenic single nucleotide variants (SNVs) in genes associated with heart disease in 290 cases of stillbirth. PLoS ONE 2019, 14, e0210017. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.Q.; Fan, L.L.; Guo, S.; Li, J.J.; Jin, J.Y.; Xiang, R. Whole-exome sequencing identifies a novel mutation of GPD1L (R189X) associated with familial conduction disease and sudden death. J. Cell. Mol. Med. 2018, 22, 1350–1354. [Google Scholar] [CrossRef]
- Marschall, C.; Moscu-Gregor, A.; Klein, H.G. Variant panorama in 1,385 index patients and sensitivity of expanded next-generation sequencing panels in arrhythmogenic disorders. Cardiovasc. Diagn. Ther. 2019, 9, S292–S298. [Google Scholar] [CrossRef]
- Yuan, M.; Guo, Y.; Xia, H.; Xu, H.; Deng, H.; Yuan, L. Novel SCN5A and GPD1L Variants Identified in Two Unrelated Han-Chinese Patients With Clinically Suspected Brugada Syndrome. Front. Cardiovasc. Med. 2021, 8, 758903. [Google Scholar] [CrossRef]
- Baranchuk, A.; Nguyen, T.; Ryu, M.H.; Femenia, F.; Zareba, W.; Wilde, A.A.; Shimizu, W.; Brugada, P.; Pérez-Riera, A.R. Brugada phenocopy: New terminology and proposed classification. Ann Noninvasive Electrocardiol. 2012, 17, 299–314. [Google Scholar] [CrossRef]
- Campuzano, O.; Sarquella-Brugada, G.; Cesar, S.; Arbelo, E.; Brugada, J.; Brugada, R. Update on Genetic Basis of Brugada Syndrome: Monogenic, Polygenic or Oligogenic? Int. J. Mol. Sci. 2020, 21, 7155. [Google Scholar] [CrossRef]
- Perez-Agustin, A.; Pinsach-Abuin, M.L.; Pagans, S. Role of Non-Coding Variants in Brugada Syndrome. Int. J. Mol. Sci. 2020, 21, 8556. [Google Scholar] [CrossRef]
- Walsh, R.; Mauleekoonphairoj, J.; Mengarelli, I.; Bosada, F.M.; Verkerk, A.O.; van Duijvenboden, K.; Poovorawan, Y.; Wongcharoen, W.; Sutjaporn, B.; Wandee, P.; et al. A Rare Noncoding Enhancer Variant in SCN5A Contributes to the High Prevalence of Brugada Syndrome in Thailand. Circulation 2024, 151, 31–44. [Google Scholar] [CrossRef]
- Bezzina, C.R.; Barc, J.; Mizusawa, Y.; Remme, C.A.; Gourraud, J.B.; Simonet, F.; Verkerk, A.O.; Schwartz, P.J.; Crotti, L.; Dagradi, F.; et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 2013, 45, 1044–1049. [Google Scholar] [CrossRef]
- Barc, J.; Tadros, R.; Glinge, C.; Chiang, D.Y.; Jouni, M.; Simonet, F.; Jurgens, S.J.; Baudic, M.; Nicastro, M.; Potet, F.; et al. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat. Genet. 2022, 54, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Masuda, T.; Hachiya, T.; Dina, C.; Simonet, F.; Nagata, Y.; Tanck, M.W.T.; Sonehara, K.; Glinge, C.; Tadros, R.; et al. Brugada syndrome in Japan and Europe: A genome-wide association study reveals shared genetic architecture and new risk loci. Eur. Heart J. 2024, 45, 2320–2332. [Google Scholar] [CrossRef] [PubMed]
- Moras, E.; Gandhi, K.; Narasimhan, B.; Brugada, R.; Brugada, J.; Brugada, P.; Krittanawong, C. Genetic and Molecular Mechanisms in Brugada Syndrome. Cells 2023, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Mascia, G.; Brugada, J.; Barca, L.; Benenati, S.; Della Bona, R.; Scarà, A.; Russo, V.; Arbelo, E.; Di Donna, P.; Porto, I. Prognostic significance of electrophysiological study in drug-induced type-1 Brugada syndrome: A brief systematic review. J. Cardiovasc. Med. 2024, 25, 775–780. [Google Scholar] [CrossRef]
Nucleotide | Protein | dbSNP/ClinVar | GnomAD (%) | ACMG/AMP | Reported |
---|---|---|---|---|---|
c.48-30T>C | NA | rs1700537085/NA | 8/1367436 (0.0005%) | VUS | Makiyama, 2008 |
c.161A>T | p.(Asp54Val) | NA | NA | VUS | Yuan, 2021 |
c.247G>A | p.(Glu83Lys) | rs72552292/ VUS | 245/1461762 (0.016%) | LB | Van Norstrand, 2007 Valdivia, 2009 Hedley, 2009 Paludan-Müller, 2019 Chen, 2019 |
c.257A>G | p.(Gln86Arg) | rs755240955/ VUS | 6/1461764 (0.0004%) | VUS | Marshall, 2019 |
c.335C>T | p.(Pro112Leu) | rs1201810677/NA | 5/1461802 (0.0003%) | VUS | Fan, 2020 |
c.370A>G | p.(Ile124Val) | rs72552293/ LB | 2412/1461798 (0.16%) | LB | Van Norstrand, 2007 Hedley, 2009 Hasdemir, 2015 Paludan-Müller, 2019 Sahlin, 2019 |
c.465C>T | p.(Ala155Ala) | rs113645050/ LB | 1276/1461858 (0.08%) | LB | Makiyama, 2008 |
c.565C>T | p.(Arg189Ter) | rs982730623/ VUS | NA | VUS | Huang, 2018 |
c.817C>T | p.(Arg273Cys) | rs72552294/ VUS | 87/1461446 (0.005%) | LB | Van Norstrand, 2007 Hedley, 2009 |
c.839C>T | p.(Ala280Val) | rs72552291/ VUS | 117/1461050 (0.008%) | LB | London, 2007 Hedley, 2009 Liu, 2009 Chen, 2019 Campuzano, 2019 Fan, 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, A.; Martínez-Barrios, E.; Cruzalegui, J.; Cesar, S.; Chipa, F.; Díez-Escuté, N.; Cerralbo, P.; Zschaeck, I.; Loredo, P.; Sarquella-Brugada, G.; et al. Brugada Syndrome and GPD1L: Definite Genotype-Phenotype Association? Cardiogenetics 2025, 15, 9. https://doi.org/10.3390/cardiogenetics15010009
Greco A, Martínez-Barrios E, Cruzalegui J, Cesar S, Chipa F, Díez-Escuté N, Cerralbo P, Zschaeck I, Loredo P, Sarquella-Brugada G, et al. Brugada Syndrome and GPD1L: Definite Genotype-Phenotype Association? Cardiogenetics. 2025; 15(1):9. https://doi.org/10.3390/cardiogenetics15010009
Chicago/Turabian StyleGreco, Andrea, Estefanía Martínez-Barrios, José Cruzalegui, Sergi Cesar, Fredy Chipa, Nuria Díez-Escuté, Patricia Cerralbo, Irene Zschaeck, Paula Loredo, Georgia Sarquella-Brugada, and et al. 2025. "Brugada Syndrome and GPD1L: Definite Genotype-Phenotype Association?" Cardiogenetics 15, no. 1: 9. https://doi.org/10.3390/cardiogenetics15010009
APA StyleGreco, A., Martínez-Barrios, E., Cruzalegui, J., Cesar, S., Chipa, F., Díez-Escuté, N., Cerralbo, P., Zschaeck, I., Loredo, P., Sarquella-Brugada, G., & Campuzano, O. (2025). Brugada Syndrome and GPD1L: Definite Genotype-Phenotype Association? Cardiogenetics, 15(1), 9. https://doi.org/10.3390/cardiogenetics15010009