Genetic Implications of Fatty Tissue for the Development of Ventricular Arrhythmias
Abstract
:1. Introduction
2. Fatty Tissue
2.1. General Data on Fatty Tissue Infiltration
2.2. Pathogenesis
Properties | Actions | Diseases |
---|---|---|
1. Metabolic activity [25,26] - increased lipolysis - decreased glycolysis - heat production | excess of free fatty acids myocardial protection against hypothermia | Coronary artery disease valvular diseases, diabetes metabolic syndrome |
2. Angiogenic factors [27] - angiogenin - endostatin - VEGF - thrombospondin-2 - angiopoietin | cell adhesion proliferation migration angiogenesis | CAD |
3. Growth and remodeling factors [28] - Activin A - follistatin - TGF 1, 2, 3 - MMP 1, 2, 3, 8, 9, 13 | fibrosis myocyte calcium signaling extracellular matrix remodeling | HF diabetes |
4. Adipocytokines [28,29,30,31,32,33] - adiponectin - leptin - resistin - visfatin - omentin - FABP4 | increased insulin sensitivity anti-inflammatory properties inflammation atherosclerosis negative inotropic effect | Obesity Metabolic syndrome |
5. Inflammatory cytokines and chemokines [33,34,35,36] - IL-6-1β - IL-6 and IL-7 receptor - PAI-1 - TNF-α - monocyte chemotactic protein-1 - chemokine ligands - adrenomedullin - phospholipase A2 | atherosclerosis vasodilator anti-inflammatory effects | Obesity CAD |
2.3. Adipose Tissue Diagnosis
3. Ventricular Arrhythmias
4. Genetics and Adipose Tissue
5. Correlation Between Genetics, Adipose Infiltration, and Cardiac Diseases
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hatem, S.N.; Redheuil, A.; Gandjbakhch, E. Cardiac adipose tissue and atrial fibrillation: The perils of adiposity. Cardiovasc. Res. 2016, 109, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.X.; Abed, H.S.; Molaee, P.; Nelson, A.J.; Brooks, A.G.; Sharma, G.; Leong, D.P.; Lau, D.H.; Middeldorp, M.E.; Roberts-Thomson, K.C.; et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J. Am. Coll. Cardiol. 2011, 57, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Jermendy, A.L.; Merkely, B.; Maurovich-Horvat, P. Clinical importance of epicardial adipose tissue. Arch. Med. Sci. 2017, 4, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Iozzo, P. Myocardial, perivascular, and epicardial fat. Diabetes Care 2011, 34 (Suppl. 2), S371–S379. [Google Scholar] [CrossRef]
- Burke, S.; Nagajyothi, F.; Thi, M.M.; Hanani, M.; Scherer, P.E.; Tanowitz, H.B.; Spray, D.C. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: Implications for Chagas disease. Microbes Infect. 2014, 16, 893–901. [Google Scholar] [CrossRef]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Gorter, P.M.; van Lindert, A.S.; de Vos, A.M.; Meijs, M.F.; van der Graaf, Y.; Doevendans, P.A.; Prokop, M.; Visseren, F.L. Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 2008, 197, 896–903. [Google Scholar] [CrossRef]
- Koepp, K.E.; Obokata, M.; Reddy, Y.; Olson, T.P.; Borlaug, B.A. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2020, 8, 657–666. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Ding, J.; Carr, J.J.; Allison, M.A.; Budoff, M.J.; Tracy, R.P.; Burke, G.L.; McClelland, R.L.; Arai, A.E.; Bluemke, D.A. Pericardial fat and the risk of heart failure. J. Am. Coll. Cardiol. 2021, 77, 2638–2652. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Corradi, D.; Sharma, A.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Kotzbeck, P.; Giordano, A.; Mondini, E.; Murano, I.; Severi, I.; Venema, W.; Cecchini, M.P.; Kershaw, E.E.; Barbatelli, G.; Haemmerle, G.; et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J. Lipid Res. 2018, 59, 784–794. [Google Scholar] [CrossRef] [PubMed]
- E Middeldorp, M.; Pathak, R.K.; Meredith, M.; Mehta, A.B.; Elliott, A.D.; Mahajan, R.; Twomey, D.; Gallagher, C.; Hendriks, J.M.L.; Linz, D.; et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: The REVERSE-AF study. EP Eur. 2018, 20, 1929–1935. [Google Scholar] [CrossRef]
- Sacks, H.S.; Fain, J.N. Human epicardial adipose tissue: A review. Am. Heart J. 2007, 153, 907–917. [Google Scholar] [CrossRef]
- Corradi, D.; Maestri, R.; Callegari, S.; Pastori, P.; Goldoni, M.; Luong, T.V.; Bordi, C. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 2004, 13, 313–316. [Google Scholar] [CrossRef]
- Bertaso, A.G.; Bertol, D.; Duncan, B.B.; Foppa, M. Epicardial fat: Definition, measurements and systematic review of main outcomes. Arq. Bras. Cardiol. 2013, 101, e18–e28. [Google Scholar] [CrossRef]
- Fainberg, H.P.; Birtwistle, M.; Alagal, R.; Alhaddad, A.; Pope, M.; Davies, G.; Woods, R.; Castellanos, M.; May, S.T.; Ortori, C.A.; et al. Transcriptional analysis of adipose tissue during development reveals depot-specific responsiveness to maternal dietary supplementation. Sci. Rep. 2018, 8, 9628. [Google Scholar] [CrossRef]
- Timóteo, A.T.; Albuquerque, F.B.; Teixeira, B.L. Pericardium, epicardial adipose tissue, and heart failure with preserved ejection fraction: Pathophysiology, quantification and treatment target11All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. Int. J. Cardiol. 2024, 412, 132303. [Google Scholar]
- Pandit, S.V.; Anumonwo, J.; Jalife, J. Atrial fibrillation susceptibility in obesity: An excess adiposity and fibrosis complicity? Circ. Res. 2016, 118, 1468–1471. [Google Scholar] [CrossRef]
- Zhang, P.; Su, J.; Mende, U. Cross talk between cardiac myocytes and fibroblasts: From multiscale investigative approaches to mechanisms and functional consequences. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1385–H1396. [Google Scholar] [CrossRef]
- Iacobellis, G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol. 2015, 11, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.N.; Sanders, P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 2014, 102, 205–213. [Google Scholar] [CrossRef]
- Marchington, J.M.; Mattacks, C.A.; Pond, C.M. Adipose tissue in the mammalian heart and pericardium: Structure, foetal development and biochemical properties. Comp. Biochem. Physiol. B 1989, 94, 225–232. [Google Scholar] [CrossRef]
- Sacks, H.S.; Fain, J.N.; Holman, B.; Cheema, P.; Chary, A.; Parks, F.; Karas, J.; Optican, R.; Bahouth, S.W.; Garrett, E.; et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: Epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 2009, 94, 3611–3615. [Google Scholar] [CrossRef]
- Venteclef, N.; Guglielmi, V.; Balse, E.; Gaborit, B.; Cotillard, A.; Atassi, F.; Amour, J.; Leprince, P.; Dutour, A.; Clément, K.; et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur. Heart J. 2013, 36, 795–805. [Google Scholar] [CrossRef]
- Greulich, S.; Maxhera, B.; Vandenplas, G.; de Wiza, D.H.; Smiris, K.; Mueller, H.; Heinrichs, J.; Blumensatt, M.; Cuvelier, C.; Akhyari, P.; et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 2012, 126, 2324–2334. [Google Scholar] [CrossRef]
- Spiroglou, S.G.; Kostopoulos, C.G.; Varakis, J.N.; Papadaki, H.H. Adipokines in periaortic and epicardial adipose tissue: Differential expression and relation to atherosclerosis. J. Atheroscler. Thromb. 2010, 17, 115–130. [Google Scholar] [CrossRef]
- Cherian, S.; Lopaschuk, G.D.; Carvalho, E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E937–E949. [Google Scholar] [CrossRef]
- Fain, J.N.; Sacks, H.S.; Buehrer, B.; Bahouth, S.W.; Garrett, E.; Wolf, R.Y.; Carter, R.A.; Tichansky, D.S.; Madan, A.K. Identification of omentin mRNA in human epicardial adipose tissue: Comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. Int. J. Obes. 2008, 32, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Langheim, S.; Dreas, L.; Veschini, L.; Maisano, F.; Foglieni, C.; Ferrarello, S.; Sinagra, G.; Zingone, B.; Alfieri, O.; Ferrero, E.; et al. Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H746–H753. [Google Scholar] [CrossRef] [PubMed]
- Lamounier-Zepter, V.; Look, C.; Alvarez, J.; Christ, T.; Ravens, U.; Schunck, W.H.; Ehrhart-Bornstein, M.; Bornstein, S.R.; Morano, I. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: A new link between obesity and heart disease. Circ. Res. 2009, 105, 326–334. [Google Scholar] [CrossRef]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef]
- Dutour, A.; Achard, V.; Sell, H.; Naour, N.; Collart, F.; Gaborit, B.; Silaghi, A.; Eckel, J.; Alessi, M.-C.; Henegar, C.; et al. Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease. J. Clin. Endocrinol. Metab. 2010, 95, 963–967. [Google Scholar] [CrossRef]
- Silaghi, A.; Achard, V.; Paulmyer-Lacroix, O.; Scridon, T.; Tassistro, V.; Duncea, I.; Clément, K.; Dutour, A.; Grino, M. Expression of adrenomedullin in human epicardial adipose tissue: Role of coronary status. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1443–E1450. [Google Scholar] [CrossRef]
- Wong, C.X.; Ganesan, A.N.; Selvanayagam, J.B. Epicardial fat and atrial fibrillation: Current evidence, potential mechanisms, clinical implications, and future directions. Eur. Heart J. 2016, 38, 1294–1302. [Google Scholar] [CrossRef]
- Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 2014, 20, 62–68. [Google Scholar] [CrossRef]
- Cochet, H.; Denis, A.; Komatsu, Y.; Jadidi, A.S.; Aït Ali, T.; Sacher, F.; Derval, N.; Relan, J.; Sermesant, M.; Corneloup, O.; et al. Automated Quantification of Right Ventricular Fat at Contrast-enhanced Cardiac Multidetector CT in Arrhythmogenic Right Ventricular Cardiomyopathy. Radiology 2015, 275, 683–691. [Google Scholar] [CrossRef]
- Ghasabeh, M.; Te Riele, A.; James, C.; Chen, V.; Tichnell, C.; Murray, B.; Eng, J.; Kral, B.G.; Tandri, H.; Calkins, H.; et al. Epicardial Fat Distribution Assessed with Cardiac CT in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Radiology 2018, 289, 641–648. [Google Scholar] [CrossRef]
- Rastegar, N.; Te Riele, A.S.; James, C.A.; Bhonsale, A.; Murray, B.; Tichnell, C.; Calkins, H.; Tandri, H.; Bluemke, D.A.; Kamel, I.R.; et al. Fibrofatty Changes: Incidence at Cardiac MR Imaging in Patients with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Radiology 2016, 280, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Bauce, B.; De Lazzari, M.; Rigato, I.; Bariani, R.; Meneghin, S.; Pilichou, K.; Motta, R.; Aliberti, C.; Thiene, G.; et al. Arrhythmogenic Right Ventricular Cardiomyopathy: Characterization of Left Ventricular Phenotype and Differential Diagnosis With Dilated Cardiomyopathy. J. Am. Heart Assoc. 2020, 9, e014628. [Google Scholar] [CrossRef] [PubMed]
- Aquaro, G.D.; Pingitore, A.; Di Bella, G.; Piaggi, P.; Gaeta, R.; Grigoratos, C.; Altinier, A.; Pantano, A.; Strata, E.; De Caterina, R.; et al. Prognostic Role of Cardiac Magnetic Resonance in Arrhythmogenic Right Ventricular Cardiomyopathy. Am. J. Cardiol. 2018, 122, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xu, J.; Li, G.; Zhou, D.; Li, S.; Zhuang, B.; Chen, X.; Duan, X.; Li, L.; Fan, X.; et al. Arrhythmogenic Left Ventricular Cardiomyopathy: A Clinical and CMR Study. Sci. Rep. 2020, 10, 533. [Google Scholar] [CrossRef]
- Aquaro, G.D.; De Luca, A.; Cappelletto, C.; Raimondi, F.; Bianco, F.; Botto, N.; Lesizza, P.; Grigoratos, C.; Minati, M.; Dell’Omodarme, M.; et al. Prognostic Value of Magnetic Resonance Phenotype in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy. J. Am. Coll. Cardiol. 2020, 75, 2753–2765. [Google Scholar] [CrossRef]
- Sasaki, T.; Calkins, H.; Miller, C.F.; Zviman, M.M.; Zipunnikov, V.; Arai, T.; Sawabe, M.; Terashima, M.; Marine, J.E.; Berger, R.D.; et al. New insight into scar-related ventricular tachycardia circuits in ischemic cardiomyopathy: Fat deposition after myocardial infarction on computed tomography—A pilot study. Heart Rhythm. 2015, 12, 1508–1518. [Google Scholar] [CrossRef]
- Cheniti, G.; Sridi, S.; Sacher, F.; Chaumeil, A.; Pillois, X.; Takigawa, M.; Frontera, A.; Vlachos, K.; Martin, C.A.; Teijeira, E.; et al. Post-Myocardial Infarction Scar With Fat Deposition Shows Specific Electrophysiological Properties and Worse Outcome After Ventricular Tachycardia Ablation. J. Am. Heart Assoc. 2019, 8, e012482. [Google Scholar] [CrossRef]
- Mordi, I.; Radjenovic, A.; Stanton, T.; Gardner, R.S.; McPhaden, A.; Carrick, D.; Berry, C.; Tzemos, N. Prevalence and Prognostic Significance of Lipomatous Metaplasia in Patients With Prior Myocardial Infarction. JACC Cardiovasc. Imaging 2015, 8, 1111–1112. [Google Scholar] [CrossRef]
- Parisi, V.; Conte, M.; Petraglia, L.; Grieco, F.V.; Bruzzese, D.; Caruso, A.; Grimaldi, M.G.; Campana, P.; Gargiulo, P.; Paolillo, S.; et al. Echocardiographic Epicardial Adipose Tissue Thickness for Risk Stratification of Patients With Heart Failure. Front. Physiol. 2020, 11, 43. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, S.; Jiang, S.; Yin, G.; Wang, C.; Zhang, Y.; Liu, Q.; Cheng, H.; Ma, N.; Zhao, T.; et al. Fat deposition in dilated cardiomyopathy assessed by CMR. JACC Cardiovasc. Imaging 2013, 6, 889–898. [Google Scholar] [CrossRef]
- Kırış, A.; Turan, O.E.; Kırış, G.; İlter, A.; Öztürk, M.; Aydın, M. The relationship between epicardial fat tissue thickness and frequent ventricular premature beats. Kardiol. Pol. 2015, 73, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Somoza, A.; Teijeira-Fernández, E.; Fernández, A.L.; González-Juanatey, J.R.; Eiras, S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H202–H209. [Google Scholar] [CrossRef] [PubMed]
- Erkasap, N. SERCA in genesis of arrhythmias: What we already know and what is new? Anadolu Kardiyol. Derg. 2007, 7 (Suppl. 1), 43–46. [Google Scholar] [PubMed]
- Homan, E.A.; Reyes, M.V.; Hickey, K.T.; Morrow, J.P. Clinical overview of obesity and diabetes mellitus as risk factors for atrial fibrillation and sudden cardiac death. Front. Physiol. 2019, 9, 1847. [Google Scholar] [CrossRef]
- Pogwizd, S.M.; Corr, P.B. Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circ. Res. 1990, 66, 672–695. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, Y.; Kitagawa, K.; Chino, S.; Ishida, M.; Matsuoka, K.; Tanigawa, T.; Nakamura, T.; Hirano, T.; Takeda, K.; Sakuma, H. Adipose tissue detected by multislice computed tomography in patients after myocardial infarction. JACC Cardiovasc. Imaging 2009, 2, 548–555. [Google Scholar] [CrossRef]
- Samanta, R.; Kumar, S.; Chik, W.; Qian, P.; Barry, M.A.; Al Raisi, S.; Bhaskaran, A.; Farraha, M.; Nadri, F.; Kizana, E.; et al. Influence of intramyocardial adipose tissue on the accuracy of endocardial contact mapping of the chronic myocardial infarction substrate. Circ. Arrhythmia Electrophysiol. 2017, 10, e004998. [Google Scholar] [CrossRef]
- Fontes-Carvalho, R.; Fontes-Oliveira, M.; Sampaio, F.; Mancio, J.; Bettencourt, N.; Teixeira, M.; Gonçalves, F.R.; Gama, V.; Leite-Moreira, A. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am. J. Cardiol. 2014, 114, 1663–1669. [Google Scholar] [CrossRef]
- Tam, W.-C.; Lin, Y.-K.; Chan, W.-P.; Huang, J.-H.; Hsieh, M.-H.; Chen, S.-A.; Chen, Y.-J. Pericardial fat is associated with the risk of ventricular arrhythmia in asian patients. Circ. J. 2016, 80, 1726–1733. [Google Scholar] [CrossRef]
- Kanat, S.; Karaduman, B.D.; Tütüncü, A.; Tenekecioğlu, E.; Mutluer, F.O.; Bayram, N.A. Effect of echocardiographic epicardial adipose tissue thickness on success rates of premature ventricular contraction ablation. Balk. Med. J. 2019, 36, 324–330. [Google Scholar] [CrossRef]
- Quisi, A.; Şentürk, S.E.; Harbalıoğlu, H.; Baykan, A.O. The relationship between echocardiographic epicardial adipose tissue, P-wave dispersion, ana corrected QT interval. Turk. Kardiyol. Dern. Ars. Arch. Turk. Soc. Cardiol. 2018, 46, 471–478. [Google Scholar] [CrossRef]
- Hung, W.-C.; Tang, W.-H.; Wang, C.-P.; Lu, L.-F.; Chung, F.-M.; Lu, Y.-C.; Hsu, C.-C.; Tsai, I.-T.; Jhuo, S.-J.; Lai, W.-T.; et al. Increased epicardial adipose tissue volume is associated with PR interval prolongation. Clin. Investig. Med. 2015, 38, E45–E52. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, Y.; Doğan, S.; Durakoğlugil, M.E.; Balcıoğlu, A.S.; Erdoğan, T.; Şatıroğlu, Ö.; Karadağ, Z.; Duman, H.; Bostan, M. The relationship between epicardial adipose tissue and P wave and QT dispersions. Turk. Kardiyol. Dern. Ars. Arch. Turk. Soc. Cardiol. 2015, 43, 621–629. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, D.; Chen, L.; Cang, J.; Zhao, Z.; Ji, Y.; Liu, S.; Miao, H.; Liu, Y.; Zhou, Q.; et al. Relationship between epicardial adipose tissue measured by computed tomography and premature ventricular complexes originating from different sites. Europace 2023, 25, euad102, Erratum in Europace 2023, 25, euad138. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.R.; Harte, A.L.; Howell, N.; Pritlove, D.C.; Ranasinghe, A.M.; Da Silva, N.F.; Youssef, E.M.; Khunti, K.; Davies, M.J.; Bonser, R.S.; et al. Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J. Clin. Endocrinol. Metab. 2009, 94, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Shamloo, A.S.; Schoene, K.; Stauber, A.; Darma, A.; Dagres, N.; Dinov, B.; Bertagnolli, L.; Hilbert, S.; Müssigbrodt, A.; Husser, D.; et al. Epicardial adipose tissue thickness as an independent predictor of ventricular tachycardia recurrence following ablation. Heart Rhythm. 2019, 16, 1492–1498. [Google Scholar] [CrossRef]
- Bekar, L.; Kalçık, M.; Çelik, O.; Alp, Ç.; Yetim, M.; Doğan, T.; Ekinözü, I.; Karaarslan, O.; Çamkıran, V.; Karavelioğlu, Y.; et al. Presence of fragmented QRS is associated with increased epicardial adipose tissue thickness in hypertensive patients. J. Clin. Ultrasound 2019, 47, 345–350. [Google Scholar] [CrossRef]
- Rubart, M.; Zipes, D.P. Genesis of cardiac arrhythmias: Electrophysiological considerations. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 7th ed.; Zipes, D.P., Libby, P., Bonow, R.O., Braunwald, E., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2004; pp. 683–685. [Google Scholar]
- Rämö, J.T.; Kany, S.; Hou, C.R.; Friedman, S.F.; Roselli, C.; Nauffal, V.; Koyama, S.; Karjalainen, J.; Maddah, M.; Palotie, A.; et al. The Cardiovascular Impact and Genetics of Pericardial Adiposity. medRxiv 2023, 2023.07.16.23292729. [Google Scholar] [CrossRef]
- Sousa, J.A.; Mendonça, M.I.; Serrão, M.; Borges, S.; Henriques, E.; Freitas, S.; Tentem, M.; Santos, M.; Freitas, P.; Ferreira, A.; et al. Epicardial Adipose Tissue: The Genetics Behind an Emerging Cardiovascular Risk Marker. Clin. Med. Insights Cardiol. 2021, 15, 11795468211029244. [Google Scholar] [CrossRef]
- Chechi, K.; Vijay, J.; Voisine, P.; Mathieu, P.; Bossé, Y.; Tchernof, A.; Grundberg, E.; Richard, D. UCP1 expression–associated gene signatures of human epicardial adipose tissue. JCI Insight 2019, 4, e123618. [Google Scholar] [CrossRef]
- Vacca, M.; Di Eusanio, M.; Cariello, M.; Graziano, G.; D’Amore, S.; Petridis, F.D.; D’Orazio, A.; Salvatore, L.; Tamburro, A.; Folesani, G.; et al. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc. Res. 2016, 109, 228–239. [Google Scholar] [CrossRef]
- Tan, L.; Xu, Q.; Wang, Q.; Shi, R.; Zhang, G. Identification of key genes and pathways affected in epicardial adipose tissue from patients with coronary artery disease by integrated bioinformatics analysis. PeerJ 2020, 8, e8763. [Google Scholar] [CrossRef] [PubMed]
- Reiner, L.; Mazzoleni, A.; Rodriguez, F.L. Statistical analysis of the epicardial fat weight in human hearts. AMA Arch. Pathol. 1955, 60, 369–373. [Google Scholar] [PubMed]
- Mancio, J.; Pinheiro, M.; Ferreira, W.; Carvalho, M.; Barros, A.; Ferreira, N.; Vouga, L.; Ribeiro, V.G.; Leite-Moreira, A.; Falcao-Pires, I.; et al. Gender differences in the association of epicardial adipose tissue and coronary artery calcification: EPICHEART study: EAT and coronary calcification by gender. Int. J. Cardiol. 2017, 249, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Groh, W.J.; Lowe, M.R.; Zipes, D.P. Severity of cardiac conduction involvement and arrhythmias in myotonic dystrophy type 1 correlates with age and CTG repeat length. J. Cardiovasc. Electrophysiol. 2002, 13, 444–448. [Google Scholar] [CrossRef]
- Russo, A.D.; Pelargonio, G.; Parisi, Q.; Santamaria, M.; Messano, L.; Sanna, T.; Casella, M.; Martino, G.D.; Ponti, R.D.; Pace, M.; et al. Widespread electroanatomic alternations of right cardiac chambers in patients with myotonic dystrophy type. J. Cardiovasc. Electrophysiol. 2006, 17, 34–40. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Wolfe, J.T.; Holmes, D.R.; Edwards, W.D. Pathology of the cardiac conduction system in myotonic dystrophy: A study of 12 cases. J. Am. Coll. Cardiol. 1988, 11, 662–671. [Google Scholar] [CrossRef]
- Awad, M.M.; Calkins, H.; Judge, D.P. Mechanisms of disease: Molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 258–267. [Google Scholar] [CrossRef]
- Chan, B.; Adam, D.N. A Review of Fabry Disease. Skin. Therapy Lett. 2018, 23, 4–6. [Google Scholar]
- del Pino, M.; Andrés, A.; Bernabéu, A.Á.; de Juan-Rivera, J.; Fernández, E.; Díaz, J.d.D.G.; Hernández, D.; Luño, J.; Fernández, I.M.; Paniagua, J.; et al. Fabry Nephropathy: An Evidence-Based Narrative Review. Kidney Blood Press. Res. 2018, 43, 406–421. [Google Scholar] [CrossRef]
- Frustaci, A.; Morgante, E.; Russo, M.A.; Scopelliti, F.; Grande, C.; Verardo, R.; Franciosa, P.; Chimenti, C. Pathology and function of conduction tissue in Fabry disease cardiomyopathy. Circ. Arrhythmia Electrophysiol. 2015, 8, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Birket, M.J.; Raibaud, S.; Lettieri, M.; Adamson, A.D.; Letang, V.; Cervello, P.; Redon, N.; Ret, G.; Viale, S.; Wang, B.; et al. A Human stem cell model of Fabry disease implicates LIMP-2 accumulation in cardiomyocyte pathology. Stem Cell Rep. 2019, 13, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabuddhe, A.V.; Pitale, S.U.; Sivanesan, S.D.; Deshpande, P.K.; Deshpande, S.P.; Daiwile, A. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease. Indian. J. Med. Res. 2020, 151, 554–561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baker, A.R.; da Silva, N.F.; Quinn, D.W.; Harte, A.L.; Pagano, D.; Bonser, R.S.; Kumar, S.; McTernan, P.G. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol. 2006, 5, 1. [Google Scholar] [CrossRef]
- Kremen, J.; Dolinkova, M.; Krajickova, J.; Blaha, J.; Anderlova, K.; Lacinova, Z.; Haluzikova, D.; Bosanska, L.; Vokurka, M.; Svacina, S.; et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: Possible role in postoperative insulin resistance. J. Clin. Endocrinol. Metab. 2006, 91, 4620–4627. [Google Scholar] [CrossRef]
- Cheng, K.-H.; Chu, C.-S.; Lee, K.-T.; Lin, T.-H.; Hsieh, C.-C.; Chiu, C.-C.; Voon, W.-C.; Sheu, S.-H.; Lai, W.-T. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int. J. Obes. 2008, 32, 268–274. [Google Scholar] [CrossRef]
- Greif, M.; Becker, A.; von Ziegler, F.; Lebherz, C.; Lehrke, M.; Broedl, U.C.; Tittus, J.; Parhofer, K.; Becker, C.; Reiser, M.; et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arter. Thromb. Vasc. Biol. 2009, 29, 781–786. [Google Scholar] [CrossRef]
- Hirata, Y.; Tabata, M.; Kurobe, H.; Motoki, T.; Akaike, M.; Nishio, C.; Higashida, M.; Mikasa, H.; Nakaya, Y.; Takanashi, S.; et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J. Am. Coll. Cardiol. 2011, 58, 248–255. [Google Scholar] [CrossRef]
- Braunersreuther, V.; Mach, F.; Steffens, S. The specific role of chemokines in atherosclerosis. Thromb. Haemost. 2007, 97, 714–721. [Google Scholar] [CrossRef]
- Gao, H.; Mejhert, N.; Fretz, J.A.; Arner, E.; Lorente-Cebrián, S.; Ehrlund, A.; Dahlman-Wright, K.; Gong, X.; Strömblad, S.; Douagi, I.; et al. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. Cell Metab. 2014, 19, 981–992. [Google Scholar] [CrossRef]
- Stine, R.R.; Shapira, S.N.; Lim, H.-W.; Ishibashi, J.; Harms, M.; Won, K.-J.; Seale, P. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol. Metab. 2016, 5, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994, 79, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, X.; Tang, Q.-Q. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β. J. Biol. Chem. 2015, 290, 755–761. [Google Scholar] [CrossRef]
- Ahmad, F.; Li, D.; Karibe, A.; Gonzalez, O.; Tapscott, T.; Hill, R.; Weilbaecher, D.; Blackie, P.; Furey, M.; Gardner, M.; et al. Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation 1998, 98, 2791–2795. [Google Scholar] [CrossRef]
- Melberg, A.; Oldfors, A.; Blomström-Lundqvist, C.; Stålberg, E.; Carlsson, B.; Larsson, E.; Lidell, C.; Eeg-Olofsson, K.E.; Wikström, G.; Henriksson, K.G.; et al. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann. Neurol. 1999, 46, 684–692. [Google Scholar] [CrossRef]
- Nava, A.; Bauce, B.; Basso, C.; Muriago, M.; Rampazzo, A.; Villanova, C.; Daliento, L.; Buja, G.; Corrado, D.; Danieli, G.A.; et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 2000, 36, 2226–2233. [Google Scholar] [CrossRef]
- McKoy, G.; Protonotarios, N.; Crosby, A.; Tsatsopoulou, A.; Anastasakis, A.; Coonar, A.; Norman, M.; Baboonian, C.; Jeffery, S.; McKenna, W.J. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000, 355, 2119–2124. [Google Scholar] [CrossRef]
- Protonotarios, N.; Tsatsopoulou, A.; Anastasakis, A.; Sevdalis, E.; McKoy, G.; Stratos, K.; Gatzoulis, K.; Tentolouris, K.; Spiliopoulou, C.; Panagiotakos, D.; et al. Genotype-phenotype assessment in autosomal recessive arrhythmogenic right ventricular cardiomyopathy (Naxos disease) caused by a deletion in plakoglobin. J. Am. Coll. Cardiol. 2001, 38, 1477–1484. [Google Scholar] [CrossRef]
- Iacobellis, G.; Pistilli, D.; Gucciardo, M.; Leonetti, F.; Miraldi, F.; Brancaccio, G.; Gallo, P.; Digioia, C. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 2005, 29, 251–255. [Google Scholar] [CrossRef]
- Dalal, D.; Nasir, K.; Bomma, C.; Prakasa, K.; Tandri, H.; Piccini, J.; Roguin, A.; Tichnell, C.; James, C.; Russell, S.D.; et al. Arrhythmogenic right ventricular dysplasia: A United States experience. Circulation 2005, 112, 3823–3832. [Google Scholar] [CrossRef]
- Haan, A.D.D.; Tan, B.Y.; Zikusoka, M.N.; Lladó, L.I.; Jain, R.; Daly, A.; Tichnell, C.; James, C.; Amat-Alarcon, N.; Abraham, T.; et al. Analysis in North Americans With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Circ. Cardiovasc. Genet. 2009, 2, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Fabritz, L.; Zwiener, M.; Witt, H.; Schäfers, M.; Zellerhoff, S.; Paul, M.; Athai, T.; Hiller, K.-H.; Baba, H.A.; et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 2006, 114, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Merner, N.D.; Hodgkinson, K.A.; Haywood, A.F.; Connors, S.; French, V.M.; Drenckhahn, J.-D.; Kupprion, C.; Ramadanova, K.; Thierfelder, L.; McKenna, W.; et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am. J. Hum. Genet. 2008, 82, 809–821. [Google Scholar] [CrossRef]
- Christensen, A.H.; Bundgaard, H.; Schwartz, M.; Hansen, S.H.; Svendsen, J.H.; Judge, D.P.; Corrado, D.; Thiene, G.; Quarta, G.; Muir, A.; et al. Cardiac Myotonic Dystrophy mimicking arrhythmogenic right ventricular cardiomyopathy in a young sudden cardiac death victim. Circ. Arrhythmia Electrophysiol. 2008, 1, 317–320. [Google Scholar] [CrossRef]
- Otten, E.; Asimaki, A.; Maass, A.; van Langen, I.M.; van der Wal, A.; de Jonge, N.; van den Berg, M.P.; Saffitz, J.E.; Wilde, A.A.; Jongbloed, J.D.; et al. Desmin mutations as a cause of right ventricular heart failure affect the intercalated disks. Heart Rhythm. 2010, 7, 1058–1064. [Google Scholar] [CrossRef]
- Klauke, B.; Kossmann, S.; Gaertner, A.; Brand, K.; Stork, I.; Brodehl, A.; Dieding, M.; Walhorn, V.; Anselmetti, D.; Gerdes, D.; et al. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum. Mol. Genet. 2010, 19, 4595–4607. [Google Scholar] [CrossRef]
- Hedberg, C.; Melberg, A.; Kuhl, A.; Jenne, D.; Oldfors, A. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy 7 is caused by a DES mutation. Eur. J. Hum. Genet. 2012, 20, 984–985. [Google Scholar] [CrossRef]
- Jacob, K.A.; Noorman, M.; Cox, M.G.P.J.; Groeneweg, J.A.; Hauer, R.N.W.; van der Heyden, M.A.G. Geographical distribution of plakophilin-2 mutation prevalence in patients with arrhythmogenic cardiomyopathy. Neth. Heart J. 2012, 20, 234–239. [Google Scholar] [CrossRef]
- Chen, S.N.; Gurha, P.; Lombardi, R.; Ruggiero, A.; Willerson, J.T.; Marian, A.J. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ. Res. 2014, 114, 454–468. [Google Scholar] [CrossRef]
- Samanta, R.; Pouliopoulos, J.; Thiagalingam, A.; Kovoor, P. Role of adipose tissue in the pathogenesis of cardiac arrhythmias. Heart Rhythm. 2016, 13, 311–320. [Google Scholar] [CrossRef]
- Deshpande, S.R.; Herman, H.K.; Quigley, P.C.; Shinnick, J.K.; Cundiff, C.A.; Caltharp, S.; Shehata, B.M. Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D): Review of 16 pediatric cases and a proposal of modified pediatric criteria. Pediatr. Cardiol. 2016, 37, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Sen-Chowdhry, S.; Prasad, S.K.; Syrris, P.; Wage, R.; Ward, D.; Merrifield, R.; Smith, G.C.; Firmin, D.N.; Pennell, D.J.; McKenna, W.J. Cardiovascular Magnetic Resonance in Arrhythmogenic Right Ventricular Cardiomyopathy Revisited: Comparison with Task Force Criteria and Genotype. J. Am. Coll. Cardiol. 2006, 48, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- Norgett, E.E.; Hatsell, S.J.; Carvajal-Huerta, L.; Cabezas, J.C.; Common, J.; Purkis, P.E.; Whittock, N.; Leigh, I.M.; Stevens, H.P.; Kelsell, D.P. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 2000, 9, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Galvez, R.R.; Portano, J.D.M.; Cortes, R.T.; Alvarez, E.B.G.; Cubias, S.M.S.; Zelaya, S.M. Reduction of epicardial adipose tissue thickness with PCSK9 inhibitors. Eur. Heart J. 2020, 41, ehaa946.3008. [Google Scholar] [CrossRef]
- Andreasen, C.R.; Andersen, A.; Knop, F.K.; Vilsbøll, T. Understanding the place for GLP-1RA therapy: Translating guidelines for treatment of type 2 diabetes into everyday clinical practice and patient selection. Diabetes Obes. Metab. 2021, 23 (Suppl. 3), 40–52. [Google Scholar] [CrossRef]
- Giugliano, D.; Scappaticcio, L.; Longo, M.; Caruso, P.; Maiorino, M.I.; Bellastella, G.; Ceriello, A.; Chiodini, P.; Esposito, K. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: An updated meta-analysis of eight CVOTs. Cardiovasc. Diabetol. 2021, 20, 189. [Google Scholar] [CrossRef]
- Chen, J.; Xu, S.; Wang, L.; Zhou, W.; Li, P.; Deng, N.; Tang, Q.; Li, Y.; Wu, L.; Chen, J.; et al. Exendin-4 inhibits atrial arrhythmogenesis in a model of myocardial infarction-induced heart failure via the GLP-1 receptor signaling pathway. Exp. Ther. Med. 2020, 20, 3669–3678. [Google Scholar] [CrossRef]
- Kai, Z.; Yongbo, W.; Lin, Z.; Jie, G.; Daoqun, J.; Zhiqiang, C. Exendin-4 attenuates ische-mia-induced ventricular arrhythmias in rats. Cardiol. J. 2013, 20, 29–33. [Google Scholar] [CrossRef]
- Wei, J.; Wang, R.; Ye, H.; Wang, Y.; Wang, L.; Zhang, X. Effects of GLP-1 receptor agonists on arrhythmias and its subtypes in patients with type 2 diabetes: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 910256. [Google Scholar] [CrossRef]
- Liu, Z.; Bian, N.; Wu, S.; Fan, Y.; Li, H.; Yu, J.; Guo, J.; Chen, D. A meta-analysis evaluating indirectly GLP-1 receptor agonists and ar-rhythmias in patients with type 2 diabetes and myocardial infarction. Front. Cardiovasc. Med. 2022, 9, 1019120. [Google Scholar]
- Ang, R.; Mastitskaya, S.; Hosford, P.S.; Basalay, M.; Specterman, M.; Aziz, Q.; Li, Y.; Orini, M.; Taggart, P.; Lambiase, P.D.; et al. Modulation of Cardiac Ventricular Excitability by GLP-1 (Glucagon-Like Peptide-1). Circ. Arrhythmia Electrophysiol. 2018, 11, e006740. [Google Scholar] [CrossRef]
Disease | Echocardiography | Cardiac CT | Cardiac MRI |
---|---|---|---|
ARVC | MAI is related to right ventricular (RV) dysfunction and the ventricular tachycardia substrate (conduction and repolarization disturbances) [38,39,40]. | MAI is related to the severity of the right ventricular structural disease, impaired RV function, and impaired LV systolic function. LV fat infiltration is a predictor of ventricular arrhythmias such as VT or VF, and sudden cardiac death, and allows a reclassification of 5-year risk of events [41,42,43,44,45]. | |
Myocardial infarction | MAI is correlated with scar age and size, as well as decreased amplitude of the bi and unipolar EGM, fragmented EGM, increased post-ablation VT recurrence, and all-cause mortality [46,47]. | MAI is related to the size of the infarcted area, adverse LV remodeling, sustained VT, the number of HF hospitalizations, and all-causemortality [48]. | |
Heart failure | EAT is a predictor of arrhythmic events such as VT or VF and AF [49]. | In patients with dilated cardiomyopathy, MAI is associated with LV global function and the fibrosis volume [50]. | |
Other conditions | EAT is correlated with the burden of VPB and VPB ablation failure [51]. |
Study | |
---|---|
Nguyen et al., 1988 [78] | Patients: 12 patients with DM1, Histopathologic observations: Fibrosis, fatty infiltration, and atrophy. General observations Adipose infiltration was noticed in the ventricular myocardium (9), the sinus node (2), the AV node (2), the AV bundle (6), and in bundle branches (1). The size and the location of the conduction system lesions correspond to the ECG abnormalities, such as prolonged PR interval, intraventricular conduction delay, and bundle branch block. Cardiac involvement by MD might have contributed to sudden death in 4 cases. |
Ahmad et al., 1988 [95] | Patients: >200 members with ARVD. Genetic observations: Genetic linkage excluded previously reported loci for ARVD, but detected a novel locus at 3p23. The haplotype analysis detected a common region between markers D3S3610 and D3S3659 of 9.3 cM. |
Melberg et al., 1999 [96] | Patients: 27 ARVC patients. Genetic observations: 4 marker loci, D10S201, D10S2327, D10S1752, and D10S1432, were linked with ARVC. |
Nava et al., 2000 [97] | Patients: 37 ARVC families. Histopathologic observations: ARVC was diagnosed at autopsy in 19 families or endomyocardial biopsy in 18 families. Genetic observations: In the linkage analysis, chromosomes 14q23-q24, 1q42-q43, and 2q32.1-q32.3 were detected. For 4 families, no linkage to known genes was observed, and for 10 families, no relevant results were detected. |
Mckoy et al., 2000 [98] | Patients: 19 individuals with Naxos disease. Genetic observations: A homozygous 2-base-pair deletion of the plakoglobin gene was detected. |
Protonotarius et al., 2001 [99] | Patients: 12 families with Naxos disease. Genetic observations: The analysis showed 28 homozygous and 40 heterozygous for the mutation. All homozygous adult patients (26) fulfilled the criteria of ARVC diagnosis, with the youngest at the age of 13. Genetic observations: In 8 heterozygous patients, minor ECG and/or echo abnormalities were detected. Among the 26 homozygotes patients, 92% presented ECG abnormalities, 92% presented ventricular arrhythmias, and all patients had RV structural alterations, but only 27% LV impairment. |
Iacobellis et al., 2005 [100] | Patients: 16 patients undergoing CABG, 5 valvular diseases, 1 AD. Histopathologic observations: Adiponectin protein value, from the epicardial adipose tissue, was significantly decreased in patients with severe coronary artery disease compared to those without. |
Dalal et al., 2005 [101] | SPatients: 100 patients diagnosed with ARVD. Histopathologic observations: Adipose infiltration of the RV with strands of cardiomyocytes was detected at the biopsy in 12 patients and at autopsy for 17 patients. |
Den Haan et al., 2005 [102] | Patients: 82 patients with ARVD/C and 18 with suspected ARVD/C. Genetic observations: 52% presented a desmosome mutation, especially in PKP2. N 3 patients presented a mutation in more than 1 gene. A mutation was observed in 5 of 18 patients (28%). |
Dello Russo et al., 2006 [77] | Patients: 13 DM1 patients. Genetic observations: A strong relationship was observed between CTG triplets and the percentage of Bi-v <0.5 mV in the atrial myocardium. General observations: The amplitude of the unipolar voltage (UNI-v) and bipolar voltage (BI-v), the bipolar potential duration, and the atrial propagation time were evaluated. UNI-v and BI-v in the inter-atrial septum, anterolateral atrial wall, and RV outflow tract were lower in MD1 patients compared to controls. |
Kirchhof et al., 2006 [103] | Patients: 10-month-old plakoglobin-deficient mice. Genetic observations: Heterozygous plakoglobin deficiency is involved in ARVC. The manifestation of this phenotype is accelerated by endurance training, suggesting a functional role for plakoglobin and training in the development of ARVC. |
Merner et al., 2008 [104] | Patients: 15 unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD 5). Genetic observations: The function of the TMEM43 gene contains a response element for PPAR gamma, which may explain the fibro-adipose replacement of the myocardium. General observations: ARVC at locus ARVD 5 is a fully penetrant, sex-influenced morbid disturbance. |
Christensen et al., 2008 [105] | Patients: Dystrophia myotonica 1 (1 patient). Histopathologic observations: Fibro-fatty replacement. Genetic observations: Increased number of CTG repeats in the DM protein kinase gene. |
Otten et al., 2010 [106] | Study: Patients: 2 families with 2 DES mutations. One family developed biventricular cardiomyopathy and for the other one, DRM with an ARVC(-like) phenotype was diagnosed in one patient. Genetic observations: DES mutations such as p.N342D and p.R454 were detected. Immunohistochemistry revealed desmin aggregates and a decreased amount of desmoplakin and plakophilin-2 in p.R454W mutation carriers. |
Klauke et al., 2010 [107] | Patients: 22 ARVC patients. Genetic observations: In 43% of patients, disease-associated sequence variants such as JUP, DSG2, DSC2, DSP, PKP2 were detected. A desmin mutation p.N116S in one ARVC patient with ARVC and terminal heart failure was identified and located in segment 1A of the desmin rod domain. |
Hedberg et al., 2012 [108] | Patients: 17 patients from an ARVC family. Genetic observations: Sanger sequencing detected the heterozygous DES mutation c.1255C>T, p. Pro 419Ser in exon 7 on chromosome 2 in 7 patients. The locus of ARVC 7 was detected in the DES on chromosome 2q35. |
Jacob et al., 2012 [109] | Patients: 28 studies on the prevalence of mutations in desmosomal protein-encoding genes. Genetic observations: Mutations in PKP2 are the most frequent. Mutation prevalence in DSP, DSG2, and DSC2 varies among the geographic zones. Mutations in JUP are rarely detected, being more frequent in Denmark, Greece, and Cyprus. |
Chen et al., 2014 [110] | Patients: Both AC patients and mouse AC models. Genetic observations: Anomalies in the expression of desmosomal proteins and the signaling pathway. |
Samanta et al., 2016 [111] | Genetic observations: Remodeling of the gap junctional Connexin 43 channels in the scar area of myocytes. |
Deshpande et al., 2016 [112] | Patients: 16 ARVC/D pediatric patients. Histopathologic observations: 6 autopsies, 6 explanted hearts, and 3 biopsies revealed massive fibro-fatty infiltration in the RV. Genetic observations: Two patients presented mutations previously reported and only one had a novel mutation of a known ARVC/D gene. |
Sen-Chowdhry et al., 2016 [113] | Patients: ARVC. Histopathologic observations: Myocyte loss, inflammation, and fibro-adiposis were observed. Genetic observations: 40% of cases presented rare variants in genes encoding desmosome components. General observations: The desmosome components involved in the intercellular junctions are responsible for cardiac mechanical strength, and may also participate in signaling networks. |
Sahasrabuddhe et al., 2020 [84] | Patients: Ischemic cardiomyopathy (27), valvular diseases (16). Histopathologic observations: Adiponectin showed downregulation in CABG patients. Genetic observations: MCP-1, VCAM-1, and, TNF-α are upregulated in the CABG group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirbu Prisecaru, R.; Purcar, O.; Manitiu, I. Genetic Implications of Fatty Tissue for the Development of Ventricular Arrhythmias. Cardiogenetics 2025, 15, 8. https://doi.org/10.3390/cardiogenetics15010008
Sirbu Prisecaru R, Purcar O, Manitiu I. Genetic Implications of Fatty Tissue for the Development of Ventricular Arrhythmias. Cardiogenetics. 2025; 15(1):8. https://doi.org/10.3390/cardiogenetics15010008
Chicago/Turabian StyleSirbu Prisecaru, Raluca, Oana Purcar, and Ioan Manitiu. 2025. "Genetic Implications of Fatty Tissue for the Development of Ventricular Arrhythmias" Cardiogenetics 15, no. 1: 8. https://doi.org/10.3390/cardiogenetics15010008
APA StyleSirbu Prisecaru, R., Purcar, O., & Manitiu, I. (2025). Genetic Implications of Fatty Tissue for the Development of Ventricular Arrhythmias. Cardiogenetics, 15(1), 8. https://doi.org/10.3390/cardiogenetics15010008