A Single Nucleotide Variant in Ankyrin-2 Influencing Ventricular Tachycardia in COVID-19 Associated Myocarditis
Abstract
:1. Introduction
2. Clinical History
3. Myocarditis and Ventricular Tachycardia (VT)
4. Genetic Testing Methods
5. Genetic Testing Results
6. Clinical Outcome
7. Ankyrin-2
8. Discussion: Myocarditis, ANK2, and VT
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- del Rio, C.; Omer, S.B.; Malani, P.N. Winter of Omicron—The Evolving COVID-19 Pandemic. JAMA 2022, 327, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper, L.T., Jr.; Chahal, C.A.A. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020, 17, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.; Cooper, L.; Fang, J.; Moslehi, J. Recognition and Initial Management of Fulminant Myocarditis|Circulation. Available online: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000745 (accessed on 2 October 2022).
- Rezkalla, S.H.; Kloner, R.A. Viral myocarditis: 1917–2020: From the Influenza A to the COVID-19 pandemics. Trends Cardiovasc. Med. 2021, 31, 163–169. [Google Scholar] [CrossRef] [PubMed]
- An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome|Circulation. Available online: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.119.043132 (accessed on 20 March 2023).
- Doodnauth, A.V.; Goel, R.; Chen, L.; Uppin, V.; Malik, Z.R.; Patel, K.H.; McFarlane, S.I. Electrical Storm with Incessant Ventricular Tachycardia in a COVID-19 Patient: Review of Current Evidence. Cureus 2021, 13, e15604. [Google Scholar] [CrossRef] [PubMed]
- Peretto, G.; Sala, S.; Rizzo, S.; Palmisano, A.; Esposito, A.; De Cobelli, F.; Campochiaro, C.; De Luca, G.; Foppoli, L.; Dagna, L.; et al. Ventricular Arrhythmias in Myocarditis: Characterization and Relationships With Myocardial Inflammation. J. Am. Coll. Cardiol. 2020, 75, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Scridon, A.; Chevalier, P. Ventricular Arrhythmias Complicating Acute Myocarditis. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-9/Ventricular-arrhythmias-complicating-acute-myocarditis (accessed on 20 March 2023).
- Farkowski, M.M.; Karlinski, M.; Pytkowski, M.; de Asmundis, C.; Lewandowski, M.; Mugnai, G.; Conte, G.; Marijon, E.; Anic, A.; Boveda, S.; et al. Mexiletine for recurrent ventricular tachycardia in adult patients with structural heart disease and implantable cardioverter defibrillator: An EHRA systematic review. EP Eur. 2022, 24, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Mugnai, G.; Paolini, C.; Cavedon, S.; Mecenero, A.; Perrone, C.; Bilato, C. Mexiletine for ventricular arrhythmias in patients with chronic coronary syndrome: A cohort study. Acta Cardiol. 2022, 77, 264–270. [Google Scholar] [CrossRef]
- Lei, M.; Wu, L.; Terrar, D.A.; Huang, C.L.H. Modernized Classification of Cardiac Antiarrhythmic Drugs. Circulation 2018, 138, 1879–1896. [Google Scholar] [CrossRef]
- Snyder, D.W. Class IB antiarrhythmic drugs: Tocainide, mexiletine, and moricizine. J. La. State Med. Soc. Off. Organ La. State Med. Soc. 1989, 141, 21–25. [Google Scholar]
- Singh, S.; Kerndt, C.; Chauhan, S.; Zeltser, R. Mexiletine. StatPearls. Published online 12 October 2022. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/36481 (accessed on 28 March 2023).
- Agarwal, R.; Kolkhof, P.; Bakris, G.; Bauersachs, J.; Haller, H.; Wada, T.; Zannad, F. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur. Heart J. 2020, 42, 152–161. [Google Scholar] [CrossRef]
- Mohler, P.J.; Rivolta, I.; Napolitano, C.; LeMaillet, G.; Lambert, S.; Priori, S.G.; Bennett, V. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. USA 2004, 101, 17533–17538. [Google Scholar] [CrossRef]
- Mohler, P.J.; Schott, J.J.; Gramolini, A.O.; Dilly, K.W.; Guatimosim, S.; DuBell, W.H.; Song, L.S.; Haurogné, K.; Kyndt, F.; Ali, M.E.; et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 2003, 421, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Mohler, P.J.; Le Scouarnec, S.; Denjoy, I.; Lowe, J.S.; Guicheney, P.; Caron, L.; Driskell, I.M.; Schott, J.J.; Norris, K.; Leenhardt, A.; et al. Defining the Cellular Phenotype of “Ankyrin-B Syndrome” Variants: Human ANK2 Variants Associated With Clinical Phenotypes Display a Spectrum of Activities in Cardiomyocytes. Circulation 2007, 115, 432–441. [Google Scholar] [CrossRef] [PubMed]
- TAAD Syndrome Genetic Testing|TAADNext|Ambry Genetics. Available online: https://www.ambrygen.com/providers/genetic-testing/12/cardiology/taadnext (accessed on 23 May 2023).
- ANK2 Ankyrin 2 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/287 (accessed on 28 March 2023).
- Lowe, J.S.; Palygin, O.; Bhasin, N.; Hund, T.J.; Boyden, P.A.; Shibata, E.; Anderson, M.E.; Mohler, P.J. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G–dependent cellular pathway. J. Cell Biol. 2008, 180, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Mohler, P.J.; Splawski, I.; Napolitano, C.; Bottelli, G.; Sharpe, L.; Timothy, K.; Priori, S.G.; Keating, M.T.; Bennett, V. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc. Natl. Acad. Sci. USA 2004, 101, 9137–9142. [Google Scholar] [CrossRef] [PubMed]
- Peretto, G.; Sala, S.; Rizzo, S.; De Luca, G.; Campochiaro, C.; Sartorelli, S.; Benedetti, G.; Palmisano, A.; Esposito, A.; Tresoldi, M.; et al. Arrhythmias in myocarditis: State of the art. Heart Rhythm 2019, 16, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Tsiachris, D.; Botis, M.; Doundoulakis, I.; Bartsioka, L.I.; Tsioufis, P.; Kordalis, A.; Antoniou, C.K.; Tsioufis, K.; Gatzoulis, K.A. Electrocardiographic Characteristics, Identification, and Management of Frequent Premature Ventricular Contractions. Diagnostics 2023, 13, 3094. [Google Scholar] [CrossRef] [PubMed]
- Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolopoulos, E.J.; Papatheou, D.; Melita, H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc. Med. 2020, 30, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Hollenbach, J.A. The immunogenetics of COVID-19. Immunogenetics 2023, 75, 309–320. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Bolze, A.; Neveux, I.; Barrett, K.M.S.; White, S.; Isaksson, M.; Dabe, S.; Lee, W.; Grzymski, J.J.; Washington, N.L.; Cirulli, E.T. HLA-A∗03:01 is associated with increased risk of fever, chills, and stronger side effects from Pfizer-BioNTech COVID-19 vaccination. HGG Adv. 2022, 3, 100084. [Google Scholar] [CrossRef] [PubMed]
- Ishak, A.; Mehendale, M.; AlRawashdeh, M.M.; Sestacovschi, C.; Sharath, M.; Pandav, K.; Marzban, S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022, 836, 146674. [Google Scholar] [CrossRef] [PubMed]
Amino Acid Characteristics | Glycine (G) | Alanine (A) |
---|---|---|
Amino Acid Name | Glycine | Alanine |
Polarity/Charge | Non-Polar | Non-Polar |
pH | Neutral | Neutral |
Residue Weight | 57 | 71 |
Hydrophobicity Score | −0.4 | 1.8 |
Hydrophilicity Score | 0 | −0.5 |
Secondary Structure Propensity | Strong α breaker/β breaker | Strong α former/β indifferent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haase, E.; Kulkarni, C.; Moore, P.; Ramanathan, A.; Sathyamoorthy, M. A Single Nucleotide Variant in Ankyrin-2 Influencing Ventricular Tachycardia in COVID-19 Associated Myocarditis. Cardiogenetics 2024, 14, 84-92. https://doi.org/10.3390/cardiogenetics14020007
Haase E, Kulkarni C, Moore P, Ramanathan A, Sathyamoorthy M. A Single Nucleotide Variant in Ankyrin-2 Influencing Ventricular Tachycardia in COVID-19 Associated Myocarditis. Cardiogenetics. 2024; 14(2):84-92. https://doi.org/10.3390/cardiogenetics14020007
Chicago/Turabian StyleHaase, Erin, Chandana Kulkarni, Peyton Moore, Akash Ramanathan, and Mohanakrishnan Sathyamoorthy. 2024. "A Single Nucleotide Variant in Ankyrin-2 Influencing Ventricular Tachycardia in COVID-19 Associated Myocarditis" Cardiogenetics 14, no. 2: 84-92. https://doi.org/10.3390/cardiogenetics14020007
APA StyleHaase, E., Kulkarni, C., Moore, P., Ramanathan, A., & Sathyamoorthy, M. (2024). A Single Nucleotide Variant in Ankyrin-2 Influencing Ventricular Tachycardia in COVID-19 Associated Myocarditis. Cardiogenetics, 14(2), 84-92. https://doi.org/10.3390/cardiogenetics14020007