# Shell Analysis and Optimisation of a Pure Electric Vehicle Power Train Based on Multiple Software

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Shell Crack Problem

## 3. Typical Working Conditions Solved by ADAMS Software

## 4. Stress Computation and Fatigue Analysis

#### 4.1. Stress Computation

#### 4.2. Fatigue Analysis

## 5. Topology Design

#### 5.1. A Middle Model Design by PRO/E Software

#### 5.2. Topology Optimisation by ANSYS Software

## 6. Stress Computation and Fatigue Analysis after Optimisation

## 7. Experiment after Optimisation

#### 7.1. Metal Fatigue Test

#### 7.2. Road Test

## 8. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lin, T.; Yan, J.; Lv, Z. Transmission mount bracket optimisation design based on the CAE analysis. J. Equip. Manuf. Technol.
**2010**, 10, 53–55. [Google Scholar] - Zhou, K.; Li, J.; Li, X. Methods of structural topology optimisation. J. Mech.
**2005**, 35, 69–76. [Google Scholar] - Deng, X.; Fang, Z.; Liu, G. Power train mount bracket topology optimisation study. J. Three Gorges Univ.
**2006**, 28, 230–232. [Google Scholar] - Zhang, S.; Zheng, D.; Hao, Q. The Structure Optimisation Design Technology Based on Hyper Works; Mechanical Industry Publishing House: Beijing, China, 2007. [Google Scholar]
- Xiao, Y. Structural Optimisation of Engine Mount Bracket; SAE noise and vibration conference and exhibition; SAE: Warrendale, PA, ISA, 2007. [Google Scholar]
- Huang, Q.; Du, D.; Huang, X. Power train mount bracket multi-load topology optimisation. J. Automot. Technol.
**2008**, 10, 27–30. [Google Scholar] - Lv, Z. A Big Minivan Power Train Mount System Optimisation Design Research; Hunan University: Changsha, China, 2010. [Google Scholar]
- Sue, X.; Chen, Z. Engine mounting back bracket design optimisation and fatigue analysis. Comput. Aided Eng.
**2011**, 20, 49–52. [Google Scholar] - Wu, L.; Cui, X. Engine mount front bracket strength analysis and improving design. J. Automot. Eng.
**2011**, 6, 42–44. [Google Scholar] - Yang, Z. Finite element analysis and improvement of engine support. J. Motor Pract. Technol.
**2011**, 2, 47–50. [Google Scholar] - Liao, S.; Cheng, C. Car mount bracket simulation analysis and size optimisation. J. Coal Mine Mach.
**2012**, 33, 23–25. [Google Scholar] - Lokesha, V.; Deepika, T.; Ranjini, P.S.; Cangul, I.N. Operations of Nanostructures via Sdd, Abc4 and Ga5 Indices. Appl. Math. Nonlinear Sci.
**2017**, 2, 173–180. [Google Scholar] [CrossRef] - Korpinar, T.; Turhan, E. Inextensible Flows of Biharmonic S-Curves according to Sabban Frame in Heisenberg Group Heis3. J. Interdiscip. Math.
**2018**, 21, 17–27. [Google Scholar] [CrossRef] - Chande, M.K.; Lee, C.; Li, C. Cryptanalysis and Improvement of a ECDLP based proxy blind signature scheme. J. Discrete Math. Sci. Cryptogr.
**2018**, 21, 23–34. [Google Scholar] [CrossRef] - Hillman, D. Looking Back to 2015 while Looking Ahead (Using a Freshly Polished Crystal Ball) to 2016: We’ll Begin First by Looking Back at Our “Hits” and “Misses”. Paper Asia
**2016**, 32, 22–25. [Google Scholar] - Lv, C.; Xing, Y.; Zhang, J.; Na, X.; Li, Y.; Liu, T.; Cao, D.; Wang, F.-Y. Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System. IEEE Trans. Ind. Inform.
**2018**, 14, 3436–3446. [Google Scholar] [CrossRef] - Lv, C.; Hu, X.; Vincentelli, A.; Marina, C.; Li, Y.; Cao, D. Driving-Style-Based Co-Design Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach. IEEE Trans. Ind. Electron.
**2018**. [Google Scholar] [CrossRef] - Lv, C.; Xing, Y.; Lu, C.; Liu, Y.; Guo, H.; Gao, H.; Cao, D. Hybrid-Learning-Based Classification and Quantitative Inference of Driver Braking Intensity of an Electrified Vehicle. IEEE Trans. Veh. Technol.
**2018**. [Google Scholar] [CrossRef]

**Figure 3.**Stress and strain under extreme conditions. (

**a**) Working Condition 1 strain; (

**b**) Working condition 2 strain; (

**c**) Working Condition 3 strain; (

**d**) Working condition 4 strain; (

**e**) Working condition 5 strain.

**Figure 4.**CAD and FEM model of middle product: (

**a**) CAD model of side A (

**b**) CAD model of side B (

**c**) FEM model of side A (

**d**) FEM model of side B.

**Figure 5.**CAD and FEM model of the optimised product. (

**a**) FEM model of side A (

**b**) FEM model of side B (

**c**) CAD model of side A (

**d**) CAD model of side B.

Condition | X Direction (N) | Y Direction (N) | Z Direction (N) | Maximum Stress (MPa) |
---|---|---|---|---|

1 | 169 | 0 | 1897 | 98.5 |

2 | 363 | −1 | −1975 | 97.8 |

3 | 1570 | 1 | −96 | 133.2 |

4 | −1478 | −105 | 68 | 123.9 |

5 | 2011 | 105 | −147 | 169.2 |

Material Grades | Elastic Modulus | Poisson Ratio | Yield Strength | Tensile Strength | Fatigue Limit | Density |
---|---|---|---|---|---|---|

ADC12 Aluminium | 7.1 × 10^{10} Pa | 0.33 | 310 MPa | 450 MPa | 138 MPa | 2.7 g/cm^{3} |

Max Distortion (m) | Maximum Stress (MPa) | Minimum Safety Factor | Fatigue Number |
---|---|---|---|

4 × 10^{−5} | 98.5 | 0.67 | 1.76 × 10^{6} |

6 × 10^{−5} | 97.8 | 0.67 | 1.82 × 10^{6} |

8.7 × 10^{−5} | 133.2 | 0.5 | 1.89 × 10^{6} |

8 × 10^{−5} | 123.9 | 0.53 | 3.4 × 10^{6} |

11 × 10^{−5} | 169.2 | 0.4 | 2.61 × 10^{6} |

Original Maximum Stress (MPa) | Maximum Stress After Initial Design (MPa) | Improved Quantity (%) |
---|---|---|

98.5 | 90.3 | 8.3 |

97.8 | 88.7 | 9.3 |

133.2 | 35.4 | 73.4 |

123.9 | 31.7 | 74.4 |

169.2 | 45.7 | 73 |

Max Distortion After Optimisation (m) | Maximum Deformation Reduction (%) | Maximum Stress After Optimisation (MPa) | Maximum Stress Reduction (%) |
---|---|---|---|

3.36 × 10^{−5} | −16 | 83.5 | −15.2 |

3.77 × 10^{−5} | −37.2 | 90.7 | −7.3 |

3.09 × 10^{−5} | −64.5 | 80.1 | −39.86 |

2.84 × 10^{−5} | −64.5 | 74.4 | −39.95 |

3.9 × 10^{−5} | −78.1 | 101.6 | −40 |

Minimum Safety Factor | Fatigue Number | Increase of Safety Coefficient (%) | Increased Number of Fatigue (times) |
---|---|---|---|

0.794 | 1.03 × 10^{7} | +18.5 | +4.85 |

0.73 | 3.7 × 10^{6} | +9 | +1.03 |

0.83 | 1.67 × 10^{7} | +66 | +87.36 |

0.9 | 3.77 × 10^{7} | +70 | +109.88 |

0.55 | 1.43 × 10^{6} | +37.5 | +53.79 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Guo, S.; Tong, X.; Yang, X.
Shell Analysis and Optimisation of a Pure Electric Vehicle Power Train Based on Multiple Software. *World Electr. Veh. J.* **2018**, *9*, 49.
https://doi.org/10.3390/wevj9040049

**AMA Style**

Guo S, Tong X, Yang X.
Shell Analysis and Optimisation of a Pure Electric Vehicle Power Train Based on Multiple Software. *World Electric Vehicle Journal*. 2018; 9(4):49.
https://doi.org/10.3390/wevj9040049

**Chicago/Turabian Style**

Guo, Shaocui, Xiangrong Tong, and Xu Yang.
2018. "Shell Analysis and Optimisation of a Pure Electric Vehicle Power Train Based on Multiple Software" *World Electric Vehicle Journal* 9, no. 4: 49.
https://doi.org/10.3390/wevj9040049