Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect
Abstract
:1. Introduction
2. Vehicle Data Collection
3. Results
3.1. Scaling Trend of Driving Range
3.2. Scaling Trend of Fuel Economy
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Data Source | MY | Make | Model | Batt. Capacity (kWh) | EPA Range (miles) | EPA City (MPGe) | EPA Highway (MPGe) | EPA Combined (MPGe) | Battery Type | |
---|---|---|---|---|---|---|---|---|---|---|
INL | 2014 | BMW | i3 | 18.8 | 81 | 137 | 111 | 124 | Li-ion | 2850 |
Internet | 2014 | BMW | i3 | 22 | 81 | 137 | 111 | 124 | Li-ion | 2635 |
Internet | 2015 | BMW | i3 | 22 | 81 | 137 | 111 | 124 | Li-ion | 2932 |
Internet | 2016 | BMW | i3 | 22 | 81 | 137 | 111 | 124 | Li-ion | 2799 |
FE | 2017 | BMW | i3 (60 A-hr) | 22 | 81 | 137 | 111 | 124 | Li-ion | 2886 |
FE | 2017 | BMW | i3 (94 A-hr) | 33 | 114 | 129 | 106 | 118 | Li-ion | 2961 |
FE | 2016 | BYD | e6 | 61.4 | 187 | 73 | 71 | 72 | Li-ion | 5247 |
FE | 2017 | BYD | e6 | 61.4 | 187 | 73 | 71 | 72 | Li-ion | 5247 |
INL | 2015 | Chevrolet | Spark EV | 18.4 | 82 | 128 | 109 | 119 | Li-ion | 2821 |
FE | 2016 | Chevrolet | Sprark EV | 19 | 82 | 128 | 109 | 119 | Li-ion | 2866 |
FE | 2017 | Chevrolet | Bolt EV | 60 | 238 | 128 | 110 | 119 | Li-ion | 3563 |
INL | 2013 | Ford | Focus Electric | 23 | 76 | 110 | 99 | 105 | Li-ion | 3616 |
Internet | 2014 | Ford | Focus Electric | 23 | 76 | 110 | 99 | 105 | Li-ion | 2995 |
Internet | 2015 | Ford | Focus Electric | 23 | 76 | 110 | 99 | 105 | Li-ion | 3624 |
FE | 2016 | Ford | Focus Electric | 23 | 76 | 110 | 99 | 105 | Li-ion | 3622 |
FE | 2018 | Ford | Focus Electric | 35 | 115 | 118 | 96 | 107 | Li-ion | 3640 |
FE | 2017 | Ford | Focus Electric | 33.5 | 115 | 118 | 96 | 107 | Li-ion | 3640 |
Internet | 2014 | Fiat | 500e | 24 | 87 | 122 | 108 | 116 | Li-ion | 2980 |
Internet | 2016 | Fiat | 500e | 24 | 84 | 121 | 103 | 112 | Li-ion | 2980 |
FE | 2017 | Fiat | 500e | 24 | 84 | 121 | 103 | 112 | Li-ion | 2980 |
FE | 2017 | Hyundai | Ioniq Electric | 28 | 124 | 150 | 122 | 136 | Li-ion | 3164 |
INL | 2015 | Kia | Soul Electric | 32.5 | 93 | 120 | 92 | 105 | Li-ion | 3334 |
FE | 2016 | Kia | Soul Electric | 27 | 93 | 120 | 92 | 105 | Li-ion | 3289 |
FE | 2017 | Kia | Soul Electric | 27 | 93 | 120 | 92 | 105 | Li-ion | 3289 |
INL | 2015 | Mercedes | B-Class | 35 | 87 | 85 | 82 | 84 | Li-ion | 3916 |
FE | 2016 | Mercedes | B250e | 28 | 87 | 85 | 82 | 84 | Li-ion | 3924 |
Internet | 2017 | Mercedes | B250e | 28 | 87 | 85 | 85 | 84 | Li-ion | 3924 |
INL | 2012 | Mitsubishi | I-MIEV | 16 | 62 | 126 | 99 | 112 | Li-ion | 2574 |
FE | 2016 | Mitsubishi | i-MiEV | 16 | 62 | 126 | 99 | 112 | Li-ion | 2579 |
FE | 2017 | Mitsubishi | i-MiEV | 16 | 59 | 121 | 102 | 112 | Li-ion | 2579 |
INL | 2011 | Nissan | Leaf | 24 | 73 | 106 | 92 | Li-ion | 3595 | |
INL | 2013 | Nissan | Leaf | 24 | 75 | 129 | 102 | 115 | Li-ion | 3302 |
Internet | 2014 | Nissan | Leaf | 24 | 84 | 126 | 101 | 114 | Li-ion | 3298 |
Internet | 2015 | Nissan | Leaf | 24 | 84 | 126 | 101 | 114 | Li-ion | 3298 |
Internet | 2016 | Nissan | Leaf (24 kwh) | 24 | 84 | 126 | 101 | 114 | Li-ion | 3324 |
FE | 2016 | Nissan | Leaf (30 kWh) | 30 | 107 | 124 | 101 | 112 | Li-ion | 3323 |
FE | 2017 | Nissan | Leaf | 30 | 107 | 124 | 101 | 112 | Li-ion | 3323 |
INL | 2015 | VW | e-Golf | 24.2 | 83 | 126 | 105 | 116 | Li-ion | 3412 |
Internet | 2015 | VW | e-Golf | 24.2 | 83 | 126 | 105 | 116 | Li-ion | 3380 |
FE | 2017 | VW | e-Golf | 35.8 | 125 | 126 | 111 | 119 | Li-ion | 3455 |
FE | 2016 | VW | e-Golf | 24.2 | 83 | 126 | 105 | 116 | Li-ion | 3380 |
INL | 2014 | Tesla | S | 85 | 265 | 94 | 97 | 95 | Li-ion | 4514 |
FE | 2016 | Tesla | S AWD-60D | 60 | 218 | 101 | 107 | 104 | Li-ion | 4861 |
FE | 2016 | Tesla | S AWD-75D | 75 | 259 | 102 | 105 | 103 | Li-ion | 4861 |
FE | 2016 | Tesla | S AWD-90D | 90 | 294 | 101 | 107 | 103 | Li-ion | 4936 |
FE | 2016 | Tesla | S AWD-70D | 70 | 240 | 101 | 102 | 101 | Li-ion | 4861 |
FE | 2016 | Tesla | S (60 kWh) | 60 | 210 | 98 | 101 | 99 | Li-ion | 4656 |
FE | 2016 | Tesla | S (70 kWh) | 70 | 234 | 88 | 90 | 89 | Li-ion | 4656 |
FE | 2016 | Tesla | S (75 kWh) | 75 | 249 | 97 | 100 | 98 | Li-ion | 4656 |
FE | 2016 | Tesla | S AWD-P90D | 90 | 270 | 91 | 100 | 95 | Li-ion | 4936 |
FE | 2016 | Tesla | X AWD-75D | 75 | 238 | 91 | 95 | 93 | Li-ion | 5269 |
FE | 2016 | Tesla | X AWD-90D | 90 | 257 | 90 | 94 | 92 | Li-ion | 5269 |
FE | 2016 | Tesla | X AWD-P90D | 90 | 250 | 89 | 90 | 89 | Li-ion | 5379 |
FE | 2016 | Tesla | X AWD-P100D | 100 | 289 | 81 | 92 | 86 | Li-ion | 5269 |
FE | 2017 | Tesla | S AWD-90D | 90 | 294 | 102 | 107 | 104 | Li-ion | 4736 |
FE | 2017 | Tesla | S AWD-60D | 60 | 218 | 101 | 107 | 104 | Li-ion | 4647 |
FE | 2017 | Tesla | S AWD-75D | 75 | 259 | 102 | 105 | 103 | Li-ion | 4647 |
FE | 2017 | Tesla | S AWD-100D | 100 | 335 | 101 | 102 | 102 | Li-ion | 4736 |
FE | 2017 | Tesla | S (60 kWh) | 60 | 210 | 98 | 101 | 99 | Li-ion | 4469 |
FE | 2017 | Tesla | S (75 kWh) | 75 | 249 | 97 | 100 | 98 | Li-ion | 4469 |
FE | 2017 | Tesla | S AWD-P100D | 100 | 315 | 92 | 105 | 98 | Li-ion | 4941 |
FE | 2017 | Tesla | X AWD-90D | 90 | 257 | 90 | 94 | 92 | Li-ion | 5267 |
FE | 2017 | Tesla | X AWD-P100D | 100 | 289 | 81 | 92 | 86 | Li-ion | 5377 |
FE | 2017 | Tesla | 3 (long range) | 74 | 310 | 131 | 120 | 126 | Li-ion | 3814 |
Model Year | Make | Model | Acceleration (0–60 mph) (s) | Peak Power from Battery (kW) |
---|---|---|---|---|
2015 | Chevrolet | Spark EV | 7.9 | 133.3 |
2015 | Kia | Soul EV | 10.5 | 89.8 |
2015 | Mercedes | B-Class | 7.5 | 156.4 |
2015 | Volkswagen | E-Golf | 12.2 | 94.8 |
2014 | BMW | i3 | 7.2 | 139.4 |
2014 | Tesla | Model S | 5.5 | 274.6 |
2013 | Ford | Focus Electric | 10.9 | 117.2 |
2013 | Nissan | Leaf | 10.6 | 87.1 |
2012 | Mitsubishi | I-MIEV | 14.9 | 53.4 |
2011 | Nissan | Leaf | 10.5 | 85.6 |
Model Year | Make | Model | MPGe @72F | MPGe @95F with Solar Load | MPGe @20F |
---|---|---|---|---|---|
2015 | Chevrolet | Spark EV | 1 | 0.82 | 0.5 |
2015 | Kia | Soul EV | 1 | 0.79 | 0.62 |
2015 | Mercedes | B-Class | 1 | 0.87 | 0.51 |
2015 | Volkswagen | E-Golf | 1 | 0.79 | 0.64 |
2014 | BMW | i3 | 1 | 0.84 | 0.48 |
2013 | Ford | Focus Electric | 1 | 0.78 | 0.49 |
2013 | Nissan | Leaf | 1 | 0.73 | 0.55 |
2012 | Mitsubishi | I-MIEV | 1 | 0.89 | 0.45 |
Average | 1 | 0.81 | 0.53 | ||
Standard deviation | 0.05 | 0.07 |
Model Year | Make | Model | Battery Capacity (kWh) | Battery Weight (kg) | Battery Type |
---|---|---|---|---|---|
2017 | Kia | Soul Electric | 27 | 277 | Li-ion |
2015 | Kia | Soul EV | 32.5 | 203 | Li-ion |
2015 | Chevrolet | Spark EV | 18.4 | 215 | Li-ion |
2015 | Mercedes | B250e | 35 | 290 | Li-ion |
2015 | Volkswagen | E-Golf | 24.2 | 313 | Li-ion |
2015 | Nissan | Leaf | 24 | 295 | Li-ion |
2014 | Nissan | Leaf | 24 | 300 | Li-ion |
2014 | BMW | i3 | 18.8 | 235 | Li-ion |
2014 | Tesla | Model S | 85 | 545 | Li-ion |
2013 | Ford | Focus Electric | 23 | 303 | Li-ion |
2013 | Nissan | Leaf | 24 | 290 | Li-ion |
2012 | Mitsubishi | I-MIEV | 16 | 227 | Li-ion |
2011 | Nissan | Leaf | 24 | 294 | Li-ion |
References
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein, T.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007; Cambridge University Press: Cambridge, NY, USA, 2007; pp. 235–336. [Google Scholar]
- Schleussner, C.-F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W.J.N.C.C. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Administration, U.E.I. How Much Carbon Dioxide Is Produced from Burning Gasoline and Diesel Fuel? Available online: https://www.eia.gov/tools/faqs/faq.php?id=307&t=10 (accessed on 19 May 2018).
- Chan, C.C. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 704–718. [Google Scholar] [CrossRef]
- CARB. California’s Advanced Clean Cars Midterm Review: Appendix C: Zero Emission Vehicle and Plug-in Hybrid Electric Vehicle Technology Assessment. Available online: https://www.arb.ca.gov/msprog/acc/acc-mtr.htm (accessed on 8 November 2018).
- John, W.; Brennan, T.E.B. Battery Electric Vehicles vs. Internal Combustion Engine Vehicles: A United States-Based Comprehensive Assessment. Arthur D Little. 2016. Available online: http://www.adlittle.com (accessed on 9 November 2018).
- Hunt, T. Is There Enough Lithium to Maintain the Growth of the Lithium-Ion Battery Market? Available online: https://www.greentechmedia.com/articles/read/Is-There-Enough-Lithium-to-Maintain-the-Growth-of-the-Lithium-Ion-Battery-M#gs.2gLDboM (accessed on 2 June 2018).
- Shahan, Z. US Electric Car Sales up 59% in January 2017. Available online: https://cleantechnica.com/2017/02/04/us-electric-car-sales-59-january-2017 (accessed on 4 February 2017).
- Draft Technical Assessment Report: Midterm Evaluation of Light-Duty Vehicle Greenhouse Gas. Emission Standards and Corporate Average Fuel Economy Standards for Model Years 2022–2025; EPA-420-D-16-900; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2016.
- EV Everywhere Grand Challenge Blueprint; U.S. Department of Energy: Washington, DC, USA, 2013.
- An, F.; Santini, D.J. Mass Impacts on Fuel Economies of Conventional vs. Hybrid Electric Vehicles; SAE Technical Paper 2004–01-0572; Argonne National Laboratory: Lemont, IL, USA, 2004. [Google Scholar] [CrossRef]
- Quong, S.; Duoba, M.; Larsen, R.; LeBlanc, N.; Gonzales, R.; Bultrago, C. Electric Vehicle Performance in 1994 DOE Competitions; SAE Technical Paper 950178; Argonne National Laboratory: Lemont, IL, USA, 1995. [Google Scholar] [CrossRef]
- Raslavičius, L.; Starevičius, M.; Keršys, A.; Pilkauskas, K.; Vilkauskas, A.J.E. Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania. Energy 2013, 55, 436–448. [Google Scholar] [CrossRef]
- Jimenez-Palacios, J.L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA, USA, 1999. [Google Scholar]
- Qu, L.; Li, M.; Chen, D.; Lu, K.; Jin, T.; Xu, X.J.A.E. Multivariate analysis between driving condition and vehicle emission for light duty gasoline vehicles during rush hours. Atmos. Environ. 2015, 110, 103–110. [Google Scholar] [CrossRef]
- Kuhns, H.D.; Mazzoleni, C.; Moosmüller, H.; Nikolic, D.; Keislar, R.E.; Barber, P.W.; Li, Z.; Etyemezian, V.; Watson, J.G. Remote sensing of PM, NO, CO and HC emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. Sci. Total Environ. 2004, 322, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Sripad, S.; Viswanathan, V. Performance metrics required of next-generation batteries to make a practical electric semi truck. ACS Energy Lett. 2017, 2, 1669–1673. [Google Scholar] [CrossRef]
- Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2017; EPA-420-R-18-001; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2018.
Vehicle Weight (kg) | Highway Fuel Economy (MPGe) | City Fuel Economy (MPGe) | Battery Capacity (kWh) | Battery Weight (kg) |
---|---|---|---|---|
1000 | 108 | 141 | 54 | 437 |
1500 | 103 | 121 | 81 | 593 |
2000 | 98 | 101 | 108 | 749 |
2500 | 93 | 81 | 135 | 905 |
3000 | 88 | 61 | 162 | 1061 |
3500 | 83 | 41 | 189 | 1217 |
4000 | 78 | 21 | 217 | 1373 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Silva, R.; Han, M. Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect. World Electr. Veh. J. 2018, 9, 46. https://doi.org/10.3390/wevj9040046
Jung H, Silva R, Han M. Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect. World Electric Vehicle Journal. 2018; 9(4):46. https://doi.org/10.3390/wevj9040046
Chicago/Turabian StyleJung, Heejung, Rebecca Silva, and Michael Han. 2018. "Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect" World Electric Vehicle Journal 9, no. 4: 46. https://doi.org/10.3390/wevj9040046
APA StyleJung, H., Silva, R., & Han, M. (2018). Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect. World Electric Vehicle Journal, 9(4), 46. https://doi.org/10.3390/wevj9040046