Load Shifting Potentials of Plug-In Electric Vehicles—A Case Study for Germany
Abstract
:1. Motivation
2. Methods and Model Descriptions
2.1. PEV Market Diffusion: The ALADIN Model
2.2. Optimal Vehicle Charging: The eLOAD Model
- connected: parked vehicles that are connected to a charging point and can be charged;
- mobile: all vehicles that are currently driving and therefore discharge; and,
- disconnected: parked vehicles that are not connected to a charging point, e.g., located on a parking lot without charging infrastructure, that are not available for load shifting.
- connected: Energy can be supplied via battery charging; additionally, a bidirectional energy exchange with the mobile group: the connected vehicle can switch into the mobile group (drive off) or mobile vehicles can enter the connected group (arriving vehicles);
- mobile: Energy is extracted from the system through driving and thereby discharging the battery; mobile vehicles can switch into the connected or disconnected groups depending on whether they arrive at a parking location with or without a charging point; and,
- disconnected: Only the bidirectional energy exchange with the mobile group is possible. The battery cannot be charged or discharged.
3. Data Sources
3.1. Data Used in the ALADIN Model
3.2. Data Used in the eLOAD Model
4. Scenarios and Further Assumptions for Case Study
4.1. Scenario Set Up
4.2. Assumptions for PEV Market Diffusion
4.3. Assumptions for Optimal Vehicle Charging
4.4. Development of the Electricity Sector
5. Results of Case Study
5.1. PEV Market Diffusion
5.2. Optimal Vehicle Charging
6. Summary, Discussion, and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dallinger, D.; Schubert, G.; Wietschel, M. Integration of intermittent renewable power supply using grid-connected vehicles—A 2030 case study for California and Germany. Appl. Energy 2013, 104, 666–682. [Google Scholar] [CrossRef]
- Babrowski, S.; Heinrichs, H.; Jochem, P.; Fichtner, W. Load shift potential of electric vehicles in Europe. J. Power Sources 2014, 255, 283–293. [Google Scholar] [CrossRef]
- Gnann, T. Market Diffusion of Plug-in Electric Vehicles and Their Charging Infrastructure. Thesis, KIT Karlsruhe, Karlsruhe, Germany, 2015. [Google Scholar]
- Gnann, T.; Plötz, P.; Kühn, A.; Wietschel, M. Modelling Market Diffusion of Electric Vehicles with Real World Driving Data—German market and Policy options. Transp. Res. Part A 2015, 77, 95–112. [Google Scholar] [CrossRef]
- Plötz, P.; Gnann, T.; Wietschel, M. Modelling market diffusion of electric vehicles with real world driving data—Part i: Model structure and validation. Ecol. Econ. 2014, 107, 411–421. [Google Scholar] [CrossRef]
- Boßmann, T. The Contribution of Electricity Consumers to Peak Shaving and the Integration of Renewable Energy Sources by Means of Demand Response. Ph.D. Thesis, KIT Karlsruhe, Karlsruhe, Germany, 2015. [Google Scholar]
- Boßmann, T.; Elsland, R.; Klingler, A.-L.; Catenazzi, G.; Jakob, M. Assessing the Optimal Use of Electric Heating Systems for Integrating Renewable Energy Sources. Energy Procedia 2015, 83, 130–139. [Google Scholar] [CrossRef]
- Fraunhofer ISI, IREES, TEP Energy: FORECAST/eLOAD Website. Available online: https://forecast-model.eu (accessed on 29 June 2017).
- Boßmann, T.; Elsland, R.; Lickert, F.; Wietschel, M. The German load curve in 2050: Structural changes through energy efficiency measures and their impacts on the electricity supply side. In Proceedings of the Summer Study on Energy Efficiency (ECEEE 2013), Hyères, France, 3–8 June 2013. [Google Scholar]
- Hautzinger, H.; Kagerbauer, M.; Mallig, N.; Pfeiffer, M.; Zumkeller, D. Mikromodellierung für die Region Stuttgart—Schlussbericht—INOVAPLAN GmbH; Institute for Transport Studies at the Karlsruhe Institute of Technology (KIT), Institut für angewandte Verkehrs- und Tourismusforschung e.V.: Karlsruhe, Germany; Heilbronn, Germany, 2013. [Google Scholar]
- Fraunhofer ISI. REM2030 Driving Profiles Database V2014-07; Fraunhofer Institute of Systems and Innovation Research ISI: Karlsruhe, Germany, 2014. [Google Scholar]
- Pfahl, S. Alternative Antriebskonzepte: Stand der Technik und Perspektiven-Die Sicht der Automobilindustrie. In Alternative Antriebskonzepte Bei Sich Wandelnden Mobilitätsstilen: Tagungsbeiträge Vom 08. und 09. März 2012 am KIT; Jochem, P., Poganietz, W.-R., Grunwald, A., Fichtner, W., Eds.; KIT Scientific Publishing: Karlsruhe, Germany, 2013; pp. 81–108. [Google Scholar]
- McKinsey. Die Energiewende in Deutschland—Anspruch, Wirklichkeit und Perspektiven; McKinsey & Company: New York, NY, USA, 2012. [Google Scholar]
- KBA. German Motor Transport Authority. Vehicle Registrations 2013 and Vehicle Stock (01/01/2014) Distinguished by Vehicle Registrations Areas (FZ1, FZ5); KBA: Würzburg, Germany, 2014. [Google Scholar]
- Entso-E. Entso-E Transparency Platform. 2017. Available online: https://www.entsoe.eu/data/ (accessed on 8 June 2018).
- NASA GES DISC Data Collections. 2017. Available online: https://disc.gsfc.nasa.gov/datasets?page=1&keywords=merra (accessed on 8 June 2018).
- International Energy Agency (IEA). World Energy Outlook; IEA: Paris, France, 2012. [Google Scholar]
- Association of the German Petroleum Industry (MWV). Entwicklungen des Tankstellenbestandes in Deutschland; Association of the German Petroleum Industry (MWV): Berlin, Germany, 2013. [Google Scholar]
- BCG. Trendstudie 2030+ Kompetenzinitiative Energie des BDI; Studie der Boston Consulting Group im Auftrag des Bundesverbandes der Deutschen Industrie (BDI) BCG: München, Germany, 2013. [Google Scholar]
- Leipziger Institut für Energie GmbH. Entwicklung der Preise für Strom und Erdgas in Baden-Württemberg Bis 2020; Endbericht: Leipzig, Germany, 2012. [Google Scholar]
- Schlesinger, M.; Lindenberger, D.; Lutz, C. Energieszenarien 2011; Prognos AG, Energiewirtschaftliches Institut an der Universität zu Köln (EWI), Gesellschaft für wirtschaftliche Strukturforschung (GWS): Basel, Switzerland; Köln, Germany; Osnabrück, Germany, 2011. [Google Scholar]
- DAT. DAT Report Ostfildern: Deutsche Automobil Treuhand (DAT); DAT: Beaverton, OR, USA, 2011. [Google Scholar]
- Verkehrsclub Deutschland (VCD). CO2-Basierte Dienstwagenbesteuerung; Verkehrsclub Deutschland (VCD): Berlin, Germany, 2008. [Google Scholar]
- Plötz, P.; Gnann, T.; Wietschel, M.; Kühn, A. Market Evolution Scenarios for Electric Vehicles—Detailed Version; Commissioned by Acatech—German National Academy of Science and Engineering and Working Group 7 of the German National Platform for Electric Mobility (NPE); Fraunhofer ISI: Karlsruhe, Germany, 2013. [Google Scholar]
- Fraunhofer, ISI, Consentec, Ifeu, R2b, EEG TU Wien, and TEP Energy. Langfristszenarien und Strategien für den Ausbau der Erneuerbaren Energien in Deutschland unter Besonderer Berücksichtigung der Nachhaltigen Entwicklung Sowie Regionaler Aspekte—Leitstudie; 2017. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/langfrist-und-klimaszenarien.html (accessed on 29 June 2018).
- Bruce, I.; Butcher, N.; Fell, C. Lessons and Insights from Experience of Electric Vehicles in the Community. In Proceedings of the Electric Vehicle Symposium 26 (EVS 26), Los Angeles, CA, USA, 6–9 May 2012. [Google Scholar]
- Ecotality and INL. The EV Project Q1 2012 Report; Ecotality Inc. and Idaho National Lab: San Francisco, CA, USA, 2011. [Google Scholar]
- International Energy Agency (IEA). Energy Technology Perspectives 2017—Catalysing Energy Technology Transformations; IEA/OECD 2017; IEA: Paris, France, 2017. [Google Scholar]
- Kaschub, T. Batteriespeicher in Haushalten unter Berücksichtigung von Photovoltaik, Elektrofahrzeugen und Nachfragesteuerung; KIT Scientific Publishing: Karlsruhe, Germany, 2017. [Google Scholar]
User Group | Private Cars | Company Cars | Fleet Vehicles |
---|---|---|---|
Data set | MOPS [10] | REM2030 [11] | |
Total no of vehicles 1 | 1,273,426 | 39,391 | 164 |
Total no of trips 1 | 18,909,380 | 191,049 | 13,374 |
Total vehicle registrations in observation area (2014) ² | 63,772 | 39,391 * | 39,391 * |
Total vehicle stock in observation area (1 January 2014) ² | 1,343,016 | 39,391 | 128,297 |
Subsample sizes | 15,943 | 9847 | 164 |
Power Rates (kW) | Domestic/Commercial | Work | Public |
---|---|---|---|
S1 | 3.7 | - | - |
S2 | 3.7 | 3.7 | - |
S3 | 3.7 | 3.7 | 3.7 |
Battery and Energy Prices | Unit | 2015 | 2020 | 2025 | 2030 | Ref. |
---|---|---|---|---|---|---|
Battery price | €/kWh | 359 | 282 | 246 | 224 | [12] |
Gasoline price | €/L | 1.274 | 1.339 | 1.408 | 1.471 | [17,18] |
Diesel price | €/L | 1.201 | 1.262 | 1.327 | 1.403 | [17,18] |
Electricity price private | €/kWh | 0.249 | 0.269 | 0.273 | 0.269 | [13,19,20,21] |
Electricity price commercial | €/kWh | 0.179 | 0.185 | 0.189 | 0.185 | [13,19,20,21] |
PEV STOCK | S1 2020 | S2 2020 | S3 2020 | S1 2030 | S2 2030 | S3 2030 |
---|---|---|---|---|---|---|
Private PHEV | 111,000 | 321,000 | 315,000 | 1,838,000 | 2,606,000 | 2,501,000 |
Private BEV | 13,000 | 30,000 | 31,000 | 828,000 | 883,000 | 898,000 |
Commercial PHEV | 342,000 | 342,000 | 333,000 | 971,000 | 971,000 | 896,000 |
Commercial BEV | 69,000 | 69,000 | 69,000 | 326,000 | 326,000 | 346,000 |
Type | S1 | S2 | S3 |
---|---|---|---|
Reduction of RES surplus electricity | 1.6 TWh | 1.8 TWh | 1.8 TWh |
Reduction of peak load (System load curve) | −0.76 GW | 2.2 GW | 2.2 GW |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michaelis, J.; Gnann, T.; Klingler, A.-L. Load Shifting Potentials of Plug-In Electric Vehicles—A Case Study for Germany. World Electr. Veh. J. 2018, 9, 21. https://doi.org/10.3390/wevj9020021
Michaelis J, Gnann T, Klingler A-L. Load Shifting Potentials of Plug-In Electric Vehicles—A Case Study for Germany. World Electric Vehicle Journal. 2018; 9(2):21. https://doi.org/10.3390/wevj9020021
Chicago/Turabian StyleMichaelis, Julia, Till Gnann, and Anna-Lena Klingler. 2018. "Load Shifting Potentials of Plug-In Electric Vehicles—A Case Study for Germany" World Electric Vehicle Journal 9, no. 2: 21. https://doi.org/10.3390/wevj9020021
APA StyleMichaelis, J., Gnann, T., & Klingler, A. -L. (2018). Load Shifting Potentials of Plug-In Electric Vehicles—A Case Study for Germany. World Electric Vehicle Journal, 9(2), 21. https://doi.org/10.3390/wevj9020021