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Abstract: Plug-in electric vehicles are the currently favoured option to decarbonize the passenger
car sector. However, a decarbonisation is only possible with electricity from renewable energies and
plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both of
these issues could be solved with coordinated load shifting (demand response). Previous studies
analysed this research question by focusing on private vehicles with domestic and work charging
infrastructure. This study additionally includes the important early adopter group of commercial fleet
vehicles and reflects the impact of domestic, commercial, work, and public charging. For this purpose,
two models are combined that capture the market diffusion of electric vehicles and their charging
behaviour (ALADIN), as well as the load shifting potential of several new energy technologies
(eLOAD). In a comparison of three different scenarios, we find that the charging of commercial
vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of
private cars does. Also, for private cars, charging at work occurs during the day and may reduce the
necessity of load shifting while public charging plays a less important role in total charging demand
as well as load shifting potential. Nonetheless, demand response reduces the system load by about
2.2 GW or 2.8% when domestic and work charging are considered when compared to a scenario with
only domestic charging where a new peak might be created in the winter hours due to load shifting
into the night.
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1. Motivation

To attain the climate targets, it is necessary to transform the energy system. Renewable energy
sources (RES) can help to decrease greenhouse gas emissions in the electricity sector. In the transport
sector, plug-in electric vehicles (PEVs) can be a means to reduce greenhouse gas emissions if powered
by electricity from RES. However, in a significant number, they risk causing additional load peaks
that have to be balanced to ensure a stable electricity system. Ideally, electricity demand of PEVs
and electricity generation of RES are coordinated e.g., by demand response. However, for this
purpose, a sufficient charging infrastructure is needed. While most studies focus on domestic charging
facilities [1] or include additional charging at work of private passenger cars [2], this paper also
considers commercial plug-in electric vehicles (PEV) and the use of public charging stations. The aim
of this paper is to assess the extent to which additional charging facilities contribute to PEV market
penetration in Germany and the shaving of peaks in the residual load (system load minus generation
of fluctuating renewable energies).

For this purpose, we combine two models that have been developed and described earlier:
The model ALADIN (Alternative Automobiles Diffusion and Infrastructure) is used to determine
the market diffusion of plug-in electric vehicles and their charging infrastructure. Also, the use of
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several types of charging infrastructure (domestic, work, and public), as well as different vehicle
user groups (private, commercial fleet vehicles, and company cars) can be analysed. Structure and
results of the model have been described in several publications [3–5]. The results can be taken as an
input into the eLOAD (energy LOad curve ADjustment) model, which aims to analyse the load shift
potential of several (new) technologies of which electric vehicles are one important technology [6].
This combination permits to provide a new contribution in this field since the potential of public charge
shifting as well as the inclusion of commercial fleet vehicles has, to the best of the authors’ knowledge,
not been analysed. In a case study, we apply the model to Germany and make projections for 2030.

The paper is structured as follows: First, we introduce the methods in Section 2 and data sources
in Section 3. Thereafter, assumptions for a case study for Germany in 2030 are presented in Section 4.
The results are shown in Section 5 before we summarize and draw conclusions for electricity suppliers
and policy makers in Section 6.

2. Methods and Model Descriptions

2.1. PEV Market Diffusion: The ALADIN Model

The market diffusion model ALADIN (Alternative Automobiles Diffusion and Infrastructure,
Figure 1) is an agent-based simulation model that is based on a large number of vehicle driving profiles
of conventional vehicles. The model was introduced in [5] and PEV market diffusion results were
published in [4]. When considering the individual driving behaviour, the replaceability by a battery
electric vehicle (BEV) is analysed and what share of electric driving (often called utility factor) could
be obtained by a plug-in hybrid electric vehicle (PHEV). Based on this technical feasibility, the utility
of four drive trains (Gasoline, Diesel, BEV, and PHEV) is calculated and compared. This utility consists
of the total cost of ownership for the vehicle, but also contains the cost for individual charging points
(at home or a designated charging point at work) as an obstructing factor and a willingness to pay
more for a plug-in electric vehicle as a favouring factor. The share of driving profiles with PEVs as
utility maximizing option is considered as their market share for vehicle sales, which diffuse into the
vehicle stock.
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An enhancement for the integration of public charging infrastructure was introduced in [3].
After the PEV diffusion, the charging behaviour of the vehicle stock at public charging points is
simulated and used to determine the energy that is charged in public. Based on this figure, the number
of profitable public charging points is calculated and constructed in the most frequented areas.
This might also lead to a reduction of public charging points if the amount of public energy charged
is not sufficient to cover their cost. The new public charging stock is considered in the individual
simulation and may lead to a higher utility of PEVs. For an illustration of the model, refer to Figure 1.

The second part of the model is necessary if public charging infrastructure is considered,
since PEVs can only be charged in public if these charging points are free at the time a PEV arrives.
Thus, they interact at public charging points, which makes a joint simulation necessary. This requires
that geographic vehicle movements are included in the analysis.

ALADIN’s modelling quality has been validated by forecasting market shares of diesel vehicles
for commercial passenger cars and comparing the results to statistical data. More detailed information
on the model validation can be found in [3,5].

2.2. Optimal Vehicle Charging: The eLOAD Model

The driving, charging, and different parking profiles (domestic, work, public), as well as the
total number of PEVs and their electricity demand from ALADIN serve as an input for the eLOAD
(energy LOad curve ADjustment) model [6]. In this study, eLOAD is used to determine the least-cost
scheduling of PEV-charging depending on an hourly price signal. It thereby simulates the potential
contribution of demand side technologies residual load smoothing (also known as demand response, DR).

eLOAD consists of two modules, see the dark blue and grey areas in Figure 2. The first module
addresses the long term evolution of the national system load curve, which is driven by structural
changes on the demand side and the introduction of new appliances (such as PEVs). By using appliance
specific load profiles, such as typical day profiles, regression based load profiles etc., a yearlong load
curve can be generated for all of the considered appliances for the base year. The load curve is then
scaled according to the respective annual demand in the base year. These load curves are deduced
from the system load curve of the base year. The resulting remaining load curve and the appliance
specific load curves are then scaled for all of the projection years, according to the yearly demand
evolution. Reassembling the scaled remaining load and the scaled load curves gives the load curve of
the projection year.World Electric Vehicle Journal 2018, 9, x FOR PEER REVIEW  4 of 15 
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Figure 2. Overview of the energy LOad curve ADjustment (eLOAD) model.
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The main advantage of this approach is its ability to properly take structural changes in the
load curve into consideration by explicitly modelling the main drivers for load deformation while
preserving stochastic outliers and characteristic irregularities from historic load curves.

The second module of eLOAD addresses the active adjustment of the load curve by means of DR.
In this study, eLOAD optimizes the national DR deployment to the objective of smoothing the net load.
Net load smoothing enables an efficient operation of existing electricity generation assets and grid
infrastructure, as well as a reduced need for investment in new capacities [6,7].

eLOAD is an established model that has frequently been used in German and European studies
for policy makers and industrial customers [8]. Regarding the validation of the eLOAD model,
a benchmark with real world data is not yet possible, since the implementation of DR programmes is
carried out only to a very limited extent. However, the importance of considering structural changes
in the load curve is discussed in [9], and a demonstration of the plausibility of the results can be found
in [6].

For this study, the methodology to represent mobile storages in the model was improved to better
reflect the particular characteristics.

With respect to PEVs, eLOAD now considers technical (battery storage size) and organizational
constraints (driving and parking cycles, charging capacity), that are characteristic for mobile storages,
when determining the least-cost scheduling of PEV charging. When it comes to organizational
constraints, PEVs are characterized by the fact that their storages are not connected continuously to
the electric grid. Thus, a storage capacity with a reduced availability and load corridor has to be
considered when not all PEVs are connected to charging points. The connection to a charging point
depends on the location of the vehicle, as well as on the availability of charging infrastructure.

To implement these availability constraints, PEVs are differentiated into three storage groups
in eLOAD:

• connected: parked vehicles that are connected to a charging point and can be charged;
• mobile: all vehicles that are currently driving and therefore discharge; and,
• disconnected: parked vehicles that are not connected to a charging point, e.g., located on a

parking lot without charging infrastructure, that are not available for load shifting.

If each of the storage groups is regarded as its own sub-system, the following energy exchange
between the groups is possible:

• connected: Energy can be supplied via battery charging; additionally, a bidirectional energy
exchange with the mobile group: the connected vehicle can switch into the mobile group (drive off)
or mobile vehicles can enter the connected group (arriving vehicles);

• mobile: Energy is extracted from the system through driving and thereby discharging the battery;
mobile vehicles can switch into the connected or disconnected groups depending on whether
they arrive at a parking location with or without a charging point; and,

• disconnected: Only the bidirectional energy exchange with the mobile group is possible. The battery
cannot be charged or discharged.

Figure 3 illustrates the energy flows in the different storage sub-systems.
The storage capacities and charging loads of the different storage groups are calculated as the product

of the overall PEV storage and the time dependent share of connected, mobile, and disconnected vehicles.
For a deeper insight into the model, in the following, we provide a formal description of the objective
function and the relevant constraints for the least-cost scheduling of PEV charging:

The objective function of the linear optimization problem minimizes the costs of the load
shifting activity:

Min
hmax

∑
i=hmin

i

∑
j=hmin

Pls,ij·(pj − pi) (1)
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With the shifted load from hour i to hour j Pls,ij, the hourly electricity price p and the consumption
increase factor cifls, where i 6= j and i, j
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[hmin; hmax]. Here, we only analyse the load shifting potential
of PEVs, thus no consumption increase is considered for load shifting (cf. consumption increase factor
in [6]). In the absence of a market model, the prices are equal to the net load, which is the case in
this study.

The ability of a process to adjust its load is first and foremost restricted by the load bounds, i.e.,
the minimal and the maximal load Pmin and Pmax, respectively:

Pmin ≤ Ph + Ph,ls ≤ Pmax (2)

With the original charging load in each hour Ph, the shifted load to and from each hour Pls,h.
Additionally, the load shifting ability is restricted by the storage capacity. In the case of mobile

storages, the storage constraints are formulated for the above-described groups of connected, mobile,
and disconnected vehicles. The capacities of the individual groups are calculated from the total
storage capacity in PEVs and the time-dependent share (vsh, vehicle share) of connected, mobile,
or disconnected vehicles. The capacity of connected vehicles is restricted by

SFLmin·vshconn,h ≤
[

i

∑
h=hmin

Ph −
i

∑
h=hmin

Pls, h

]
−

i

∑
h=hmin

vexconn−mob, h ≤ SFLmax·vshconn, h (3)

With the minimal and maximal storage fill levels SFLmin and SFLmax, respectively. The share of
connected vehicles in each hour is referred to as vshconn,h, and the energy that is taken out of the system
with bidirectional exchange of energy via the transfer of vehicles (vex, vehicle exchange) form the
connected to the mobile state in each hour vexconn-mob,h.

While mobile storages are subject to

SFLmin ·vshmob, h ≤
i

∑
h=hmin

vexconn−mob,h −
i

∑
h=hmin

vexmob−disconn, h −
i

∑
h=hmin

Pdis, h

≤ SFLmax·vshmob, h

(4)

Further, the amount of energy in the mobile storages in the beginning and at the end of each
optimization interval must be equal:

hmax

∑
h=hmin

vexconn−mob, h −
hmax

∑
h=hmin

vexmob−disconn, h −
hmax

∑
h=hmin

Pdis,h = 0 (5)

With the share of mobile (driving) vehicles in each hour vshmob,h and the discharge load in each
hour Pdis,h. The electricity exchange via vehicle transfer from the connected to the mobile state in each
hour is denoted as vexconnmob,h and the transfer from the mobile to disconnected state is referred to as
vexmob-disconn,h.

Disconnected storages are subject to

SFLmin(1− vshconn, h − vshmob,h) ≤
i

∑
h=hmin

vexmob−disconn,h ≤ SFLmax(1− vshconn, h − vshmob,h) (6)

Again, the amount of energy in the disconnected storages in the beginning and end of each
optimization interval must be equal. Since only a bilateral exchange via vehicle transfer is possible in
the case of disconnected storages, the vehicle transfer is constrained by

hmax

∑
h=hmin

vexmob−disconn,h = 0 (7)
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In addition to the storage constraints, also the bilateral energy exchange via vehicle transfer is
restricted. The following constraints for the exchange between the individual storage groups ensures
that the exchanged energy between the groups does not exceed the available storage capacities:

− SFLmax·vshconn, h ≤ vexconn−mob,h ≤ SFLmax·vshconn,h (8)

− SFLmax·vshmob,h ≤ vexmob−disconn,h ≤ SFLmax·vshmob,h (9)

− SFLmax (1− vshconn,h − vshmob,h) ≤ vexmob−disconn,h (10)

The above described modelling approach results in a quantitative load shifting potential,
providing detailed information about the seasonal, weekly, as well as hourly load shifting availability
of the individual appliances. It generates a smoothed net load curve that may be used in an electricity
market model to quantify the impacts of DR on the electricity system. We may now determine the load
shift potential of electric vehicles from different user groups (private, commercial fleet, and company
cars) at different charging facilities (domestic, work, and public).World Electric Vehicle Journal 2018, 9, x FOR PEER REVIEW  5 of 15 
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3. Data Sources

3.1. Data Used in the ALADIN Model

The main data source used in the model ALADIN is vehicle driving profiles, i.e., all trips
of vehicles in a certain time period (here: at least one week). These profiles also contain
socio-demographic information of the driver, the household and vehicle in the case of private vehicles,
as well as information about the vehicle and the company owning it for commercial fleet vehicles.
Since geographical information is necessary, we use the mobility panel for Stuttgart (MOPS) and driving
profiles of REM2030 in the same area for commercial driving profiles [10,11] Unlike in [12], we do
not use MOP [13], which contains data representative for Germany, since we need the geographical
information in MOPS. Results were tested for representativeness for the German car sales in [8] and
were suitable for this purpose. Profiles for company cars were selected and information on garages and
the willingness to pay more for PEVs was added and tested in [8], and will be used here. As the joint
simulation of several thousand vehicles profiles is quite computation intensive, only a share of profiles
is considered in the simulation. An overview of the full sample and the used share are presented in
Table 1.
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Table 1. Description of data sets used in the model ALADIN.

User Group Private Cars Company Cars Fleet Vehicles

Data set MOPS [10] REM2030 [11]
Total no of vehicles 1 1,273,426 39,391 164

Total no of trips 1 18,909,380 191,049 13,374
Total vehicle registrations in observation area (2014) 2 63,772 39,391 * 39,391 *

Total vehicle stock in observation area (1 January 2014) 2 1,343,016 39,391 128,297
Subsample sizes 15,943 9847 164

1 Reduced sample after assignment of personal trips to vehicles and clustering to 15 min-intervals; 2 registrations
from [14]; * distribution between fleet and company cars is an assumption based on [12].

Since results for Stuttgart have to be extrapolated to Germany, the registrations are multiplied by
20.54, which is equal to the inverse of the share of the regions’ registrations in Germany.

3.2. Data Used in the eLOAD Model

The database of the eLOAD model includes four types of data: hourly load profiles, historic load
curves, and a temperature time series, as well as appliance specific demand response parameters.
The load profile data base comprises more than 500 hourly load profiles from various types of industrial,
commercial, and residential appliances or processes. The load profiles are available either for the
length of an entire year (8760 h) or as average profiles for typical days (distinguished by weekday,
season, and in the case of heating and cooling technologies by temperature). The data originate from
various national and international surveys and field tests; see [6,8] for further details. Some national
profiles are transferred to other countries by means of time use surveys. Historic load curves are
provided by the Europe power network association Entso-e [15], temperature time series come from
the MERRA data base of the NASA [16].

The demand response parameters, required for the optimization part of eLOAD, include information
on the availability and restrictions of appliances that are suitable for demand response activities, as well
as system information e.g., on the tarification scheme, see [6].

4. Scenarios and Further Assumptions for Case Study

4.1. Scenario Set up

For our case study, we define three scenarios with different availabilities of charging infrastructure:
In scenario S1, charging is possible when vehicles are parked at home at 3.7 kW and private vehicle
users pay for their private charging point. Commercial fleet vehicles charge only commercially at
3.7 kW and pay for this charging point. We increase the availability of charging infrastructure for
private users by allowing charging at work at 3.7 kW in scenario S2, while users have to pay for the
private charging point and the one at work. Commercial fleet vehicles are charged as in the first
scenario. In scenario S3 also public charging at 3.7 kW is possible for private and commercial fleet
vehicles (cf. Table 2).

Table 2. Scenarios with available power rates.

Power Rates (kW) Domestic/Commercial Work Public

S1 3.7 - -
S2 3.7 3.7 -
S3 3.7 3.7 3.7

In all scenarios, the individual charging infrastructure (domestic, commercial, and at work) is
paid by the vehicle holder and hence used whenever possible. Thus, all of the vehicles are charged
whenever they are at domestic, commercial charging spots, and, if available, at work. All users pay
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for public charging through the public charging price, which contains the costs for public charging
infrastructure, including a subsidy from public authorities. For this reason, vehicles are assumed
to only be charged in public if the battery is half depleted (to return home), and, in case of PHEVs,
driving with electricity from public charging stations is cheaper than driving with conventional fuel.

4.2. Assumptions for PEV Market Diffusion

For the simulation of the PEV market diffusion, we need a variety of technical and economic
assumptions. For BEVs, we consider battery sizes of 40 kWh and a depth of discharge of 90%,
which results in an average electric driving range of 180 km (2015) to 210 km (2030). The PHEV
contains a battery with 10 kWh capacity allowing 42 km (2015) to 50 km (2030) electric driving distance
at 80% depth of discharge. All other vehicle parameters are found in [3], while battery and energy
prices are shown in Table 3.

Table 3. Battery and energy prices (all prices without VAT in €2015).

Battery and Energy Prices Unit 2015 2020 2025 2030 Ref.

Battery price €/kWh 359 282 246 224 [12]
Gasoline price €/L 1.274 1.339 1.408 1.471 [17,18]

Diesel price €/L 1.201 1.262 1.327 1.403 [17,18]
Electricity price private €/kWh 0.249 0.269 0.273 0.269 [13,19–21]

Electricity price commercial €/kWh 0.179 0.185 0.189 0.185 [13,19–21]

Here, we consider an average scenario with a conservative exponential decrease of battery prices
and a slight increase of fuel prices based on the New Policies scenario of the World Energy Outlook [17].
Electricity prices increase until 2025 due to the EEG-supplement, but profit from economies of scale
for renewable energies in 2030 [13,19–21]. The investment horizon as well as holding time for first
vehicles is 3.8 years for commercial vehicles and 6.2 years for private vehicles [22,23]. An interest rate
of 5% is assumed [12].

Furthermore, we assume infrastructure costs to be very low in the beginning—decreasing 5% per
year until 2030 (see [3], Table 4.2). We distinguish charging infrastructure according to the four types of
accessibility (at home, at work, commercial, and public) and also consider for private users if they own
a garage. The investment horizon is assumed to be 15 years [24]. Previous simulations showed that
charging points always need to be subsidized [3]. Thus, we use a subsidy, as suggested in Scenario
“home, work & public” in ([3], p. 116), which assumes that public charging points receive a subsidy of
85% of its annual cost in 2015 linearly decreasing to 0% in 2030.

4.3. Assumptions for Optimal Vehicle Charging

The simulation of optimal vehicle charging is subject to technical restrictions. To be consistent
with the assumptions in the ALADIN model, the average storage capacity in each year is assumed for
the individual PEVs.

We assume that the electricity demand has to be supplied on each day, i.e., loads cannot be shifted
from one day to the next. As long as the vehicles electricity demand is supplied on time for the next
trip, it is assumed that the charging load of each vehicle can be controlled for the entire time interval
in which the PEV is connected to the grid. Possible user interferences or user preferences are not
considered here, which results in the technical potential of optimal load-scheduling.

4.4. Development of the Electricity Sector

For the eLOAD model, assumptions are needed that describe the future development of the
electricity sector in Germany. As written above, the first module of eLOAD addresses the long-term
evolution of the national system load curve. Therefore, information is needed on the total electricity
demand. In this case study, we refer to the scenario framework of the “Leitstudie” [25]. According to
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this source, the total electricity demand will decrease by 9% in 2020 and by 15% in 2030 in Germany
when compared to the electricity demand of 523 TWh that occurred in 2010. This decline is due
to efficiency improvements that are expected for applications in the electricity sector. Furthermore,
the renewable energy sources shall be expanded in Germany in order to reduce CO2 emissions.
For calculating the residual load, the electricity that is produced by renewable energy sources is also
taken from the study “Leitstudie” [25]. Thus, it is assumed that 35% of the electricity will be provided
by renewable energy sources in 2020, which will increase to 50% in 2050.

5. Results of Case Study

5.1. PEV Market Diffusion

Let us now turn to the simulation results for the PEV stock. Figure 4 illustrates the results of the
simulations for PEVs in the three scenarios from 2015 to 2030.
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Figure 4. Total stock of plug-in electric vehicles in three scenarios.

We can observe the following: The PEV stock rises to four million vehicles in the home charging
scenario (S1), 4.7 million when home and work charging are allowed (S2), and to 4.7 million PEVs in the
home, work, and public charging scenario (S3). Thus, with the availability of additional work charging
infrastructure, the PEV stock may increase by about 700,000 vehicles. However, additional charging
infrastructure in public has no effect on the PEV stock. This is a surprising result, which has been
intensively discussed in [3].

Interesting for the load shift potential is also the share of private and commercial fleet vehicles,
as well as company cars and the number of BEVs and PHEVs. These shares are shown in Figure 5 and
Table 4.World Electric Vehicle Journal 2018, 9, x FOR PEER REVIEW  10 of 15 
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Figure 5. PEV stock in the three charging scenarios distinguished by user group and PEV type.
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Here, the PEV stock in 2020 and 2030 is decomposed into six vehicle user groups: private
BEVs (green dashed), private PHEVs (blue squared), fleet BEVs (green dotted), and fleet PHEVs
(blue dashed), and company BEVs and PHEVs, which have a share below 1% and are thus not shown
at all. We can observe that the PEV stock is dominated by PHEVs (80% in 2020 and 70% in 2030),
which is important since their battery sizes decrease the load shift potential. Further, it is clearly visible
that fleet vehicles are important to consider in 2020 (about 80% with private charging only (S1) and
about 55% if charging at work is also possible (S2)), but also in 2030 when their stock shares are still
around 25–30%. This is also an important finding as fleet vehicles drive significantly more and more
regularly than private cars [3]. Hence, the shape of their load curve could be different. This will be
analyzed in the next section.

Table 4. PEV stock in the three different charging scenarios distinguished by user group and PEV type.

PEV STOCK S1 2020 S2 2020 S3 2020 S1 2030 S2 2030 S3 2030

Private PHEV 111,000 321,000 315,000 1,838,000 2,606,000 2,501,000
Private BEV 13,000 30,000 31,000 828,000 883,000 898,000

Commercial PHEV 342,000 342,000 333,000 971,000 971,000 896,000
Commercial BEV 69,000 69,000 69,000 326,000 326,000 346,000

5.2. Optimal Vehicle Charging

We first take a look at the load curves of a regular Tuesday for all three scenarios that are shown in
Figure 6. We chose a Tuesday for comparison since most vehicle profiles start on Monday and we thus
may see some untypical effects. As the PEV stock and the charging options differ, especially in scenario
S1 when compared to S2 and S3, their load curves vary too. In scenario S1, we find the typical load
curve of private electric vehicles with a lot of charging overnight when vehicles are parked at home.
Commercial charging, however, more often occurs during the day when commercial fleet vehicles are
often parked at the company. Their charging also increases the evening peaks, yet a lot of charging is
performed during the day when a substantial amount of electricity from RES is available. Turning to
the possibility of additionally charging at work in S2, we find that an additional load peak occurs in
the morning hours when people arrive at their workplace (green coloured area). Again, this may be
favourable to match the demand and supply of RES electricity even without load shifting (see also [2]).
If public charging points are added in S3, only a small part of the electricity demand is covered by these
additional charging options (purple coloured area), which also occurs in the evening (peak) hours.World Electric Vehicle Journal 2018, 9, x FOR PEER REVIEW  11 of 15 
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Figure 6. Electricity demand of PEVs without demand response (DR) on a Tuesday depending on the
available charging infrastructure in the scenarios.

When considering demand response, the charging of electric vehicles in summer time is primarily
shifted into midday hours due to substantial PV-based power generation and a correspondingly low
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level of the net load. In the winter season, vehicle charging is partially shifted into night time hours,
especially at days with low solar generation. As described in the methodology section, the ALADIN
model provides time-dependent shares of PEVs in the three storage groups connected, mobile and
disconnected, which serve as organizational constraints within the eLOAD model. The hourly shares in
each group are calculated from individual driving profiles and the vehicle stock in each year. Figure 7
depicts the hourly share of PEVs in the connected state for Tuesdays for private cars (left panel) and
commercial vehicles (right panel) in the different scenarios. Since PEVs can only be charged in the
connected state, the figure illustrates that the possibility to shift charging loads to the middle of the day
is greatly enhanced in the scenarios S2 and S3. The reason is the possibility to charge private passenger
cars at the workplace, where they are parked during the day. In the scenario S3, the option of charging
in public places enhances the availability of private cars further, and additionally allows for a higher
share of connected commercial PEVs during the day.
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Figure 7. Average share of connected PEVs on Tuesdays in the three scenarios over the course of the
day; private passenger cars (left) and commercial fleet (right).

The different charging options between the scenarios lead to significant differences in the electricity
consumption when the demand response option is considered. Figure 8 compares the load profiles
of uncontrolled charging (black line) and optimized charging (demand response (DR)) in scenario
S1 (blue line), S2 (green line), and S3 (dotted line). The figure illustrates that the additional charging
option at work leads to a new load peak in summer at midday, when load is shifted towards hours with
substantial PV-based power generation and a correspondingly low net load. In the winter season the
load is shifted primarily into night hours, and the effect of the charging option at work is considerably
smaller. If public charging points are added in scenario S3, the electricity consumption remains almost
the same. Hence, the availability of electric vehicles during hours with a low net load is already
sufficient when charging at home and at work is possible.

To address the effect of the demand response option on the net load, optimal vehicle charging is
compared to uncontrolled charging for the scenario S3 in Figure 9 (left panel-uncontrolled charging,
right panel-demand response). The net load curve is characterised by a valley during midday hours
with substantial PV power production, especially in the summer months. In Winter, the midday valley
is less pronounced, and the lowest net load occurs in the night hours. Consequently, the optimal
charging of electric vehicles is generally scheduled at midday, and additionally, during the night hours
in winter. Both private and commercial vehicles are able to shift substantial amounts of their charging
load, due to overall high shares of vehicles in the connected state in the scenario S3 (for the availability,
see Figure 7).
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Figure 8. Electricity consumption of PEVs on Tuesdays in summer and winter, with uncontrolled
charging (uncontr.) and with demand response (DR).
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Figure 9. Average vehicle charging and net load in 2030 with charging options at home, at work and in
public (Scenario S3).

In scenario S3, the described deployment of load shifting can facilitate peak shaving of the system
load by about 2.2 GW or 2.8% when compared with a scenario without load shifting. Thus, the surplus
of electricity by RES can be reduced by 1.8 TWh or 30% (see also Table ) resulting in 1.8 TWh of RES
surplus used for charging of PEVs. In contrast, uncontrolled charging of electric vehicles at work,
at home, and in public raises electric load by more than 2 GW, in particular, at current peak hours
(at 10:00 a.m. and 7:00 p.m., see left part of Figure 9).

Table 5 lists the reduction of RES surplus electricity and the peak load reduction for all three
scenarios. The reduction of RES surplus is significantly lower, when only charging at home is possible
for the private PEVs (0.2 TWh less than in scenarios S2 and S3). Additionally, the peak load increases
in the scenario S1. This stems from the limited possibility of load scheduling, which results in large
amounts of charging load being shifted towards the night hours in winter, and thus creating a new
load peak.

Table 5. Summary of load shifting potential in the three different charging scenarios.

Type S1 S2 S3

Reduction of RES surplus electricity 1.6 TWh 1.8 TWh 1.8 TWh
Reduction of peak load (System load curve) −0.76 GW 2.2 GW 2.2 GW
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The additional public charging points in scenario S3 only have a small effect on the RES surplus
reduction, as well as on the peak load reduction. Nevertheless, the results of scenarios S1 in comparison
to S2/S3 show that additional charging infrastructure at work does not only promote the diffusion of
private PEVs, but also enables vehicle charging during midday hours when solar electricity generation
is highest.

6. Summary, Discussion, and Conclusions

The aim of this study was to analyse the load shifting potential of plug-in electric vehicles when
taking different accessibility types of charging infrastructure (domestic, work, and public charging
options), as well as different types of vehicle user groups into consideration. We found that the market
projections for plug-in electric vehicles are dominated by commercial fleet vehicles (at least in 2020)
and plug-in hybrid electric vehicles (also until 2030). This largely influences the load curve of electric
vehicle charging, since commercial fleet vehicles charge more often during the day when electricity
from RES is available. Apart from that, an additional charging option at work also shifts charging of
private cars into the day creating an additional morning peak. Additional charging options in public
neither have meaningful effect on the electricity demand of PEVs nor on the load shifting potentials.
Demand response can reduce the total amount of RES surplus electricity by 1.6 TWh (26%) if only
domestic charging options are available and by 1.8 TWh (30%) with additional charging at work.

We have to remind the reader that both results are based on simulation models that cannot
provide perfect projections of the future. Charging of users may be different, e.g., higher in public,
yet large research projects, and reports support the high importance of domestic charging, meaningful
importance of charging at work, and unsure relevance of public charging [26–28]. Furthermore, the here
presented approach decomposes the load for different electric vehicles to groups, but nevertheless
represents the PEVs within each group on an aggregated level. This aggregation may be criticized
since it can possibly overestimate the potential of demand response. Modelling PEVs individually
provides higher accuracy though comes along with higher computation times. This trade-off between
accuracy and complexity is also mentioned by Kaschub (2017) [29] who qualitatively discusses the
differences of modelling the PEV fleet as a whole, a representative set of vehicles and all individual
PEVs. In his point of view, the tendency to overestimate the load shift potentials is often the case.
In Bossmann (2015) [6], an earlier version of eLOAD was used that was only based on one profile for
driving and parking. In a case study for 2050, Bossmann (2015) [6] found 42% of RES that could be
integrated through load shifting. This result is not directly comparable since the share of PEV and RES
is lower in 2030, but it indicates a higher load shifting potential. Thus, we can consider the approach in
this paper as an improvement when compared to the aggregated use of driving and charging profiles,
knowing that it might still overestimate the load shift potentials in reality. It enables the consideration
of availability and electricity consumption with a high time resolution, and therefore provides an
added value to the discussion of the load shifting potential provided by mobile storages.

In our point of view, an interesting finding for electricity suppliers is the high share of commercial
charging during the day and the possibility to shift loads by additional charging options at work.
Since providing additional charging options at work might be less costly than equipping a lot of
charging points with technology for demand response, selling this equipment could be an interesting
business model with additional gains for electricity suppliers as well. For policy makers, this underlines
the necessity to facilitate charging at work. Support programs for setting up charging infrastructure at
work could support the current legislative simplification for companies to provide charging facilities
for their employees.

Further research could include public fast charging options that have been neglected in this
study. Also, optimizing on based on price signals may be another interesting option in new modelling
attempts. Moreover, the comparison of the DR potential of PEVs could be compared to the potential of
other flexible technologies, such as heat pumps or stationary storage battery that are currently installed
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by households to store their self-generated PV power. Also, an optimization on price signals instead of
peak shaving could be interesting for further research as well.
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