Next Article in Journal
IMPACT OF PENETRATION OF ELECTRIC VEHICLES ON INDIAN POWER GRID
Previous Article in Journal
Environmental performance of a battery electric vehicle: a descriptive Life Cycle Assessment approach
World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on mdpi.com as a courtesy and upon agreement with AVERE.
Open AccessArticle

Design and Evaluation of a Wireless Power Transfer System with Road Embedded Transmitter Coils for Dynamic Charging of Electric Vehicles

1
EV System Lab., Nissan Research Center, Nissan Motor co., ltd., 1-1, Morinosatoaoyama, Atsugi-shi, Kanagawa 243-0123, JAPAN
2
Research Testing Section No.1, Nissan Research Center, Nissan Motor co., ltd., 1-1, Morinosatoaoyama, Atsugi-shi, Kanagawa 243-0123, JAPAN
*
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2013, 6(4), 848-857; https://doi.org/10.3390/wevj6040848
Published: 27 December 2013
PDF [876 KB, uploaded 18 May 2018]

Abstract

The cruising range of an electric vehicle (EV) can be greatly extended by a dynamic wireless charging system because the battery can be charged while the vehicle is moving. However, the investment in infrastructure can be enormous and has to be reduced to implement the system. This paper presents the design of a wireless power transfer system with road embedded transmitter coils to facilitate dynamic charging of EVs. A 30 cm by 1.6 m transmitter coil, which is relatively long compared with the 40-cmdiameter circular receiver coil, has been designed to reduce the cost of the transmitter circuit. A prototype transmitter coil has been embedded into a road for evaluation of its characteristics. The measured coupling coefficient of the transmitter and receiver coils is as small as 0.09 because of the asymmetry between the coils. Compensation circuits for the transmitter and receiver coils have been designed and optimized for such a small coupling coefficient condition. The designed dynamic charging system can transfer more than 1 kW of electric power with more than 90% efficiency. Five transmitter circuits have been embedded into a road surface for testing. Cement asphalt mortar was used to construct the road surface in this study to avoid damaging the transmitter coils by high temperature and high pressure during the construction work. The designed receiver circuit has been installed on a compact 2-seater EV. A demonstration was conducted to show that the retrofitted EV can successfully receive electric power transferred from the road.
Keywords: electric vehicle; dynamic charging; wireless power transfer; coil; compensation circuit electric vehicle; dynamic charging; wireless power transfer; coil; compensation circuit
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Throngnumchai, K.; Hanamura, A.; Naruse, Y.; Takeda, K. Design and Evaluation of a Wireless Power Transfer System with Road Embedded Transmitter Coils for Dynamic Charging of Electric Vehicles. World Electr. Veh. J. 2013, 6, 848-857.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top