Next Article in Journal
Added Value for Electrified Vehicles through Enhanced Active Safety
Previous Article in Journal
Research and Design on Digital PFC of 2kW On-board Charger
World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on as a courtesy and upon agreement with AVERE.
Open AccessArticle

Thermal Impedance Spectroscopy for Li-Ion Batteries with an IR Temperature Sensor System

Institute for Electrical Energy Storage Technology (Technische Universität München), Arcisstr. 21, 80333 Munich, Germany
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2013, 6(3), 581-591;
Published: 27 September 2013
PDF [1057 KB, uploaded 18 May 2018]


Thermal impedance spectroscopy (TIS) is a non-destructive method for characterizing thermal properties of entire battery cells. Heat capacity, thermal conductivity and heat exchange with environment are deter-mined by an evaluation of the heat transfer behavior of the battery. TIS measurements are usually conduct-ed with contact-based temperature sensors, such as thermocouples or thermistors, which show drawbacks at higher convection rates and higher temperature differences between battery and environment. To elude drawbacks in these kinds of sensors, an infrared-based temperature sensor system for battery sur-face temperature measurements is implemented. TIS measurements are conducted with this sensor system and with conventional, contact-based temperature sensors. Accuracy and reliability of thermal parameter identification is analyzed for the different sensor systems. Moreover, thermal parameters are identified for different cylindrical 18650 Li-ion cells with capacities between 1.1 Ah and 2.7 Ah. The comparison of different types of temperature sensors shows that contact-based sensors underestimate surface temperatures even at low temperature differences to environment. This causes an error in thermal parameter identification. The TIS measurements performed with contact-based sensors show divergence of 20 - 60 % for heat capacity, 30 - 70 % for thermal conductivity and 20 - 60 % for convective heat exchange with environment. With our IR temperature sensor system, parameter identification is performed for different batteries. Re-sulting values for specific heat capacity are in a range between 900 and 1020 J/kgK and thermal conduc-tivities in radial direction lies between 3.1 and 3.6 W/mK. Our investigations show that IR-based temperature sensors are an effective progression for TIS measure-ments and improve quality of parameter identification at low cost. Moreover, discrepancies mentioned in TIS literature can be explained by our findings.
Keywords: lithium battery; battery model; modeling; thermal management; materials lithium battery; battery model; modeling; thermal management; materials
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Keil, P.; Rumpf, K.; Jossen, A. Thermal Impedance Spectroscopy for Li-Ion Batteries with an IR Temperature Sensor System. World Electr. Veh. J. 2013, 6, 581-591.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics



[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top