Next Article in Journal
Smart Charging Systems for Plug-in Electric Vehicles
Previous Article in Journal
Worldwide Electric Powered Two Wheel Market
Article Menu

Article Versions

Export Article

World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on mdpi.com as a courtesy and upon agreement with AVERE.
Open AccessArticle

Model-Based Remaining Driving Range Prediction in Electric Vehicles by using Particle Filtering and Markov Chains

Institute of Control Theory and Systems Engineering, Technische Universit¨at Dortmund, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
*
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2013, 6(1), 204-213; https://doi.org/10.3390/wevj6010204
Published: 29 March 2013
PDF [860 KB, uploaded 17 May 2018]

Abstract

The remaining driving range (RDR) has been identified as one of the main obstacles for the success of electric vehicles. Offering the driver accurate information about the RDR reduces the range anxiety and increases the acceptance of electric vehicles. The RDR is a random variable that depends not only on deterministic factors like the vehicle’s weight or the battery’s capacity, but on stochastic factors such as the driving style or the traffic situation. A reliable RDR prediction algorithm must account the inherent uncertainty given by these factors. This paper introduces a model-based approach for predicting the RDR by combining a particle filter with Markov chains. The predicted RDR is represented as a probability distribution which is approximated by a set of weighted particles. Detailed models of the battery, the electric powertrain and the vehicle dynamics are implemented in order to test the prediction algorithm. The prediction is illustrated by means of simulation based experiments for different driving situations and an established prognostic metric is used to evaluate its accuracy. The presented approach aims to provide initial steps towards a solution for generating reliable information regarding the RDR which can be used by driving assistance systems in electric vehicles.
Keywords: electric vehicle; remaining driving range; driving assistance system; particle filter; Markov chain electric vehicle; remaining driving range; driving assistance system; particle filter; Markov chain
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Oliva, J.A.; Weihrauch, C.; Bertram, T. Model-Based Remaining Driving Range Prediction in Electric Vehicles by using Particle Filtering and Markov Chains. World Electr. Veh. J. 2013, 6, 204-213.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top