Next Article in Journal
Modelling customer choice and market development for future automotive powertrain technologies
Previous Article in Journal
How well can early adopters of electric vehicles be identified?
World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on mdpi.com as a courtesy and upon agreement with AVERE.
Open AccessArticle

Impact of innovative ILHYPOS supercapacitors on a fuel cell vehicle

Italian National Agency for New Technologies, Energy and the Environment (ENEA), Energy Department, C.R. Casaccia, Via Anguillarese301, 00123 Roma, Italy
*
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2009, 3(4), 727-734; https://doi.org/10.3390/wevj3040727
Published: 25 December 2009
PDF [733 KB, uploaded 18 May 2018]

Abstract

Electrochemical capacitors (SC) are receiving increasing attention as possible enabling technologies in applications where high power is required for short times, such as in hybrid vehicles (HEV) and uninterruptible power systems (UPS). Moreover, there are some applications using fuel cells (FC) as power generators, whose energy efficiency is greatly reduced whenever FC power variations are significant. In 2005 the European Commission (EC) funded the ILHYPOS project, mainly aimed at the research and development of innovative SCs with highly improved specific performances (specific energy and power), and based on environmentally acceptable materials, such as ionic liquids, a novel electrolyte class of materials, with a working voltage in excess of 5 V. The improvements of SC performances were pursued also studying new electrode materials and/or cell designs: specific energy in excess of 40 Wh/kg, based only on active material weights have been estimated, in configurations with electronic conducting polymers or activated carbons in asymmetric configurations. As part of the Project ILHYPOS, the possible impact of the studied SCs has been evaluated by means of simulations in defined applications, such as those in fuel cell vehicles (FCV) and UPS, powered by fuel cells. The simulations for vehicle applications have been performed by using conventional standardized and real duty cycles. The sizing of the ILHYPOS SCs has been carried out with developed mathematical models and applied to a FC hybrid electric van, a test prototype developed by an Italian small enterprise. This paper first highlights the most recent achievements of the ILHYPOS Project and, then, presents the impacts of the developed SCs with respect to commercial SCs and a drivetrain with and without SCs.
Keywords: HEV; supercapacitors; materials; simulation HEV; supercapacitors; materials; simulation
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Conte, M.; Pasquali, M. Impact of innovative ILHYPOS supercapacitors on a fuel cell vehicle. World Electr. Veh. J. 2009, 3, 727-734.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top