Next Article in Journal
Component Design of x-EVs using Virtual Integrated Development Environment
Previous Article in Journal
Evaluation of a multipurpose hybrid vehicle concept
 
 
World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Previous articles were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on mdpi.com as a courtesy and upon agreement with AVERE.
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Sorting Through the Many Total-Energy-Cycle Pathways Possible with Early Plug-In Hybrids

by
Dana Meyers
* and
Kammy Willis
180 South Avenue, Tallmadge, Ohio 44278
*
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2008, 2(1), 66-88; https://doi.org/10.3390/wevj2010066
Published: 28 March 2008

Abstract

Using the “total energy cycle” methodology, we compare U.S. near term (to ~ 2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine “incremental” sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NOx), fine particulate (PM2.5) and sulfur oxides (SOx) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from ~ 16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle’s life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.
Keywords: Plug-in Hybrid Electric Vehicle; Li-ion Battery; Energy Consumption; Vehicle Performance; Zero Emissions Vehicle (ZEV) Plug-in Hybrid Electric Vehicle; Li-ion Battery; Energy Consumption; Vehicle Performance; Zero Emissions Vehicle (ZEV)

Share and Cite

MDPI and ACS Style

Meyers, D.; Willis, K. Sorting Through the Many Total-Energy-Cycle Pathways Possible with Early Plug-In Hybrids. World Electr. Veh. J. 2008, 2, 66-88. https://doi.org/10.3390/wevj2010066

AMA Style

Meyers D, Willis K. Sorting Through the Many Total-Energy-Cycle Pathways Possible with Early Plug-In Hybrids. World Electric Vehicle Journal. 2008; 2(1):66-88. https://doi.org/10.3390/wevj2010066

Chicago/Turabian Style

Meyers, Dana, and Kammy Willis. 2008. "Sorting Through the Many Total-Energy-Cycle Pathways Possible with Early Plug-In Hybrids" World Electric Vehicle Journal 2, no. 1: 66-88. https://doi.org/10.3390/wevj2010066

APA Style

Meyers, D., & Willis, K. (2008). Sorting Through the Many Total-Energy-Cycle Pathways Possible with Early Plug-In Hybrids. World Electric Vehicle Journal, 2(1), 66-88. https://doi.org/10.3390/wevj2010066

Article Metrics

Back to TopTop