An Effective Hybrid Strategy: Multi-Fuzzy Genetic Tracking Controller for an Autonomous Delivery Van
Abstract
:1. Introduction
1.1. Problem Statement
1.2. State of the Art
1.3. Contribution
2. System and Methodology
2.1. Vehicle Model
2.2. Artificial-Intelligence-Based Tracking Control Strategies
2.2.1. Multi-Fuzzy Genetic Algorithm
2.2.2. Alternative State-of-the-Art Tracking Control Strategies
2.3. Performance Indicators
3. Results and Discussion
- The trajectory generation module defines the pose of the van () considering the vehicle model to simulate six repetitive scenarios.
- The look-ahead error blocks simultaneously compute the lateral offset and heading angle error with respect to the reference path, where the look-ahead distance is defined based on the fixed distance to mimic an expert driver who anticipates the distance he/she can travel in the city at low speed.
- The control layer consists of the FL-based position and angle controller. The inputs of the controller are the velocity and the look-ahead lateral error and the look-ahead angular error and three blocks for setting the weights of and to determine the resultant steering angle .
- The performance evaluation module is used for online assessment of the vehicle tracking performance for the selected strategy using the metrics specified in Equations (8), (10) and (11).
3.1. Illustrative Analysis
3.2. Analysis Across Performance Metrics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fagnant, D.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Chen, Y.; Gonder, J.; Young, S.; Wood, E. Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach. Transp. Res. Part A Policy Pract. 2019, 122, 134–145. [Google Scholar] [CrossRef]
- Linton, C.; Fuller, R.; Bray, J. White van Cities: Questions, Challenges and Options on the Growth of Urban Van Traffic, Urban Transport Group. 2018. Available online: https://www.urbantransportgroup.org/system/files/general-docs/White%20Van%20Cities.pdf (accessed on 9 April 2025).
- Omohundro, S. Autonomous technology and the greater human good. J. Exp. Theor. Artif. Intell. 2014, 26, 303–315. [Google Scholar] [CrossRef]
- Fu, X.; Nie, Q.; Liu, J.; Khattak, A.; Hainen, A.; Nambisan, S. Constructing spatiotemporal driving volatility profiles for connected and automated vehicles in existing highway networks. J. Intell. Transp. Syst. 2021, 26, 572–585. [Google Scholar] [CrossRef]
- Hartavi, A.E.; Kabbani, T.; Sarhadi, P.; Shah Alias Sangani, A.; Zaya, J.; Maroun, S.; Saleh, M.; Shanmugam, S.; Krishna, A.; Ou, J.; et al. Reliable Sense-Plan-Act Approaches for TrustVehicles. In Enhanced Trustworthiness and End User Acceptance of Conditionally Automated Vehicles in the Transition Period; Springer: Cham, Switzerland, 2021; pp. 69–85. [Google Scholar]
- Marino, R.; Scalzi, S.; Netto, M. Nested PID steering control for lane keeping in autonomous vehicles. Control. Eng. Pract. 2011, 19, 1459–1467. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Ren, H.; Gao, Z.; Liu, Z. Path tracking and handling stability control strategy with collision avoidance for the autonomous vehicle under extreme conditions. IEEE Trans. Veh. Technol. 2020, 69, 14602–14617. [Google Scholar] [CrossRef]
- Ni, J.; Hu, J.; Xiang, C. Robust path following control at driving/handling limits of an autonomous electric racecar. IEEE Trans. Veh. Technol. 2019, 68, 5518–5526. [Google Scholar] [CrossRef]
- Alcalá, E.; Puig, V.; Quevedo, J.; Rosolia, U. Autonomous racing using linear parameter varying-model predictive control (LPV-MPC). Control. Eng. Pract. 2020, 95, 104270. [Google Scholar] [CrossRef]
- Yao, Q.; Tian, Y.; Wang, Q.; Wang, S. Control strategies on path tracking for autonomous vehicle: State of the art and future challenges. IEEE Access 2020, 8, 161211–161222. [Google Scholar] [CrossRef]
- Rokonuzzaman, M.; Mohajer, N.; Nahavandi, S.; Mohamed, S. Review and performance evaluation of path tracking controllers of autonomous vehicles. IET Intell. Transp. Syst. 2021, 15, 646–670. [Google Scholar] [CrossRef]
- Tian, F.; Li, Z.; Wang, F.; Li, L. Parallel Learning-Based Steering Control for Autonomous Driving. IEEE Trans. Intell. Veh. 2022, 8, 379–389. [Google Scholar] [CrossRef]
- Shan, Y.; Zheng, B.; Chen, L.; Chen, L.; Chen, D. A reinforcement learning-based adaptive path tracking approach for autonomous driving. IEEE Trans. Veh. Technol. 2020, 69, 10581–10595. [Google Scholar] [CrossRef]
- Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A survey of deep learning applications to autonomous vehicle control. IEEE Trans. Intell. Transp. Syst. 2020, 22, 712–733. [Google Scholar] [CrossRef]
- Kabzan, J.; Hewing, L.; Liniger, A.; Zeilinger, M.N. Learning-based model predictive control for autonomous racing. IEEE Robot. Autom. Lett. 2019, 4, 3363–3370. [Google Scholar] [CrossRef]
- Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control. Eng. Pract. 2018, 76, 41–53. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J.; Zhao, C.; Liu, C.; Liao, F.; Chan, C.Y. Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning. Transp. Res. Part C Emerg. Technol. 2022, 134, 103489. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, SMC–15, 116–132. [Google Scholar] [CrossRef]
- Torra, V. A review of the construction of hierarchical fuzzy systems. Int. J. Intell. Syst. 2002, 17, 531–543. [Google Scholar] [CrossRef]
- Mendel, J. Uncertain Rule-Based Fuzzy Systems—Introduction and New Directions, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kamada, H.; Yoshida, M. A Visual Control System Using Image Processing and Fuzzy Theory. In Springer Series in Perception Engineering; Springer: New York, NY, USA, 1992; pp. 111–128. [Google Scholar] [CrossRef]
- Lee, T.H.; Leung, F.H.F.; Tam, P.K.S. Position control for wheeled mobile robots using a fuzzy logic controller. In Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 99CH37029), San Jose, CA, USA, 29 November–3 December 1999; IEEE: New York City, NY, USA, 1999; Volume 2, pp. 525–528. [Google Scholar]
- Allou, S.; Zennir, Y.; Belmeguenai, A. Fuzzy logic controller for autonomous vehicle path tracking. In Proceedings of the 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2017; IEEE: New York City, NY, USA, 2017; pp. 328–333. [Google Scholar]
- García-Cerezo, A.; Ollero, A.; Martínez, J.L. Design of a robust high-performance fuzzy path tracker for autonomous vehicles. Int. J. Syst. Sci. 1996, 27, 799–806. [Google Scholar] [CrossRef]
- Armagan, E.; Kumbasar, T. A fuzzy logic based autonomous vehicle control system design in the TORCS environment. In Proceedings of the 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2017; IEEE: New York City, NY, USA, 2017; pp. 737–741. [Google Scholar]
- Hodge, N.E.; Trabia, M.B. Steering fuzzy logic controller for an autonomous vehicle. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; IEEE: New York City, NY, USA, 1999; Volume 3, pp. 2482–2488. [Google Scholar]
- Trabia, M.; Shi, L.Z.; Hodge, N.E. A Fuzzy Logic Controller for Autonomous Wheeled Vehicles; UNLV: Las Vegas, NV, USA, 2006. [Google Scholar]
- Jiang, X.; Motai, Y.; Zhu, X. Predictive fuzzy logic controller for trajectory tracking of a mobile robot. In Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05, Espoo, Finland, 28–30 June 2005; IEEE: New York City, NY, USA, 2005; pp. 29–32. [Google Scholar]
- Yang, J.; Zheng, N. An expert fuzzy controller for vehicle lateral control. In Proceedings of the IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; IEEE: New York City, NY, USA, 2007; pp. 880–885. [Google Scholar]
- Chang, S.J.; Li, T.H.S. Design and implementation of fuzzy parallel-parking control for a car-type mobile robot. J. Intell. Robot. Syst. 2002, 34, 175–194. [Google Scholar] [CrossRef]
- El Hajjaji, A.; Bentalba, S. Fuzzy path tracking control for automatic steering of vehicles. Robot. Auton. Syst. 2003, 43, 203–213. [Google Scholar] [CrossRef]
- Rastelli, J.P.; Peñas, M.S. Fuzzy logic steering control of autonomous vehicles inside roundabouts. Appl. Soft Comput. 2015, 35, 662–669. [Google Scholar] [CrossRef]
- Naranjo, J.E.; Sotelo, M.A.; Gonzalez, C.; Garcia, R.; De Pedro, T. Using fuzzy logic in automated vehicle control. IEEE Intell. Syst. 2007, 22, 36–45. [Google Scholar] [CrossRef]
- Wang, X.; Fu, M.; Ma, H.; Yang, Y. Lateral control of autonomous vehicles based on fuzzy logic. Control. Eng. Pract. 2015, 34, 1–17. [Google Scholar] [CrossRef]
- Kehtarnavaz, N.; Nakamura, E.; Griswold, N.; Yen, J. Autonomous vehicle following by a fuzzy logic controller. In NAFIPS/IFIS/NASA’94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, San Antonio, TX, USA, 18–21 December 1994; IEEE: New York City, NY, USA, 1994; pp. 333–337. [Google Scholar]
- Griswold, N.C.; Kehtarnavaz, N.D.; Miller, K.M. A transportable neural network controller for autonomous vehicle following. In Proceedings of the Intelligent Vehicles’ 94 Symposium, Paris, France, 24–26 October 1994; IEEE: New York City, NY, USA, 1994; pp. 195–200. [Google Scholar]
- Dai, X.; Li, C.; Rad, A. An Approach to Tune Fuzzy Controllers Based on Reinforcement Learning for Autonomous Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2005, 6, 285–293. [Google Scholar] [CrossRef]
- JiuHong, R.; Mengyin, F.; Yibin, L. Intelligent vehicle lateral controller design based on genetic algorithm and TS fuzzy-neural network. J. Syst. Eng. Electron. 2005, 16, 382–387. [Google Scholar]
- Abdalla, T.Y.; Abdulkareem, A. A PSO optimized fuzzy control scheme for mobile robot path tracking. Int. J. Comput. Appl. 2013, 76, 11–17. [Google Scholar] [CrossRef]
- Martinez-Soto, R.; Castillo, O.; Aguilar, L.T.; Baruch, I.S. Bio-inspired optimisation of fuzzy logic controllers for autonomous mobile robots. In Proceedings of the 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Berkeley, CA, USA, 6–8 August 2012; IEEE: New York City, NY, USA, 2012; pp. 1–6. [Google Scholar]
- Valdez, F.; Melin, P.; Castillo, O. An improved evolutionary method with fuzzy logic for combining particle swarm optimisation and genetic algorithms. Appl. Soft Comput. 2011, 11, 2625–2632. [Google Scholar] [CrossRef]
- Castillo, O.; Martinez-Marroquin, R.; Melin, P.; Valdez, F.; Soria, J. Comparative study of bio-inspired algorithms applied to the optimisation of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 2012, 192, 19–38. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Guo, H.; Zhang, G. Improved Model Predictive Control Path Tracking Approach Based on Online Updated Algorithm with Fuzzy Control and Variable Prediction Time Domain for Autonomous Vehicles. World Electr. Veh. J. 2024, 15, 257. [Google Scholar] [CrossRef]
- Liu, G.; Shao, W. Coordinated Control Strategy for Stability Control and Trajectory Tracking with Wheel-Driven Autonomous Vehicles Under Harsh Situations. World Electr. Veh. J. 2025, 16, 163. [Google Scholar] [CrossRef]
- Strelen, J.C. The genetic algorithm is useful to fitting input probability distributions for simulation models. In Proceedings of the Business and Industry Symposium-ASTC 2003, Orlando, FL, USA, 29 March–4April 2003; pp. 8–13. [Google Scholar]
- Ghazali, M.; Gupta, I.; Ben Abdallah, M.A.; Clarke, J.; Indragandhi, V.; Hartavi, A.E. Performance Comparison of Three Rival AI-Powered Intelligent Trajectory Tracking Controllers for an Autonomous Delivery Van. Transp. Res. Procedia 2023, 72, 3039–3045. [Google Scholar] [CrossRef]
- Kabbani, T.; Sarhadi, P.; Ghazali, M.; Gamage, C.P.; Serbes, D.; Sozen, E.; Ozan, B.; Hartavi, A.E. Model Validation of Articulated Heavy-Duty Vehicle via IPG for Tracking Controller Design. Transp. Res. Procedia 2023, 72, 681–687. [Google Scholar] [CrossRef]
Controller | Weights Parameterisation Strategy | Superiority | Limitation | Objective Focus |
---|---|---|---|---|
GA optimisation | Pre-determination | Fixed and adaptable weights control performance | ||
Path-geometry-based | Not optimal | Varying weights baseline control | ||
Expert knowledge | Simple tuning | Not adaptable, poor performance | Fixed weights baseline control |
S1 | S2 | S3 | S4 | S5 | S6 | |
---|---|---|---|---|---|---|
Scenarios | ||||
---|---|---|---|---|
S1 | ||||
S2 | ||||
S3 | ||||
S4 | ||||
S5 | ||||
S6 |
Scenarios | ||||||
---|---|---|---|---|---|---|
S1 | ||||||
S2 | ||||||
S3 | ||||||
S4 | ||||||
S5 | ||||||
S6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazali, M.; Samadi, Z.; Gol, M.; Demir, A.; Rodoplu, K.; Kabbani, T.; Hatipoğlu, E.; Hartavi, A.E. An Effective Hybrid Strategy: Multi-Fuzzy Genetic Tracking Controller for an Autonomous Delivery Van. World Electr. Veh. J. 2025, 16, 336. https://doi.org/10.3390/wevj16060336
Ghazali M, Samadi Z, Gol M, Demir A, Rodoplu K, Kabbani T, Hatipoğlu E, Hartavi AE. An Effective Hybrid Strategy: Multi-Fuzzy Genetic Tracking Controller for an Autonomous Delivery Van. World Electric Vehicle Journal. 2025; 16(6):336. https://doi.org/10.3390/wevj16060336
Chicago/Turabian StyleGhazali, Mohammad, Zaid Samadi, Mehmet Gol, Ali Demir, Kemal Rodoplu, Tarek Kabbani, Emrecan Hatipoğlu, and Ahu E. Hartavi. 2025. "An Effective Hybrid Strategy: Multi-Fuzzy Genetic Tracking Controller for an Autonomous Delivery Van" World Electric Vehicle Journal 16, no. 6: 336. https://doi.org/10.3390/wevj16060336
APA StyleGhazali, M., Samadi, Z., Gol, M., Demir, A., Rodoplu, K., Kabbani, T., Hatipoğlu, E., & Hartavi, A. E. (2025). An Effective Hybrid Strategy: Multi-Fuzzy Genetic Tracking Controller for an Autonomous Delivery Van. World Electric Vehicle Journal, 16(6), 336. https://doi.org/10.3390/wevj16060336