Attributes of Electric Mobility Integration into Urban Planning: Perspectives and the Brazilian Context
Abstract
:1. Introduction
- There is no structured framework identifying the key attributes linking electromobility to urban planning, making it difficult to establish guidelines for cities seeking to implement sustainable mobility solutions;
- The influence of urban morphology and travel behaviors on electric vehicle adoption is still not well understood, limiting the potential for tailored policies and infrastructure planning;
- The existing research lacks a comprehensive analysis of policies and regulations governing electromobility in Brazil, particularly regarding the integration of electric vehicles with urban infrastructure.
2. Method
3. Results
3.1. Alignment
3.2. Sectoral Integration
3.3. Transport Infrastructure
3.4. Multi-Sectoral Engagement
3.5. Environmental Sustainability
3.6. Urbanism
3.7. User Profiles
3.8. Technologies
3.9. Governance
3.10. Relationship Between the Attributes of Electric Mobility Integration into Urban Planning
4. Brazilian Context
5. Conclusions
- Electromobility integration depends on adequate transport infrastructure, efficient governance, sectoral integration, and environmental sustainability to be effectively incorporated into the urban ecosystem. The analysis of electromobility attributes underscores the importance of these factors in shaping policies and strategies that support the electrification of urban mobility.
- While electromobility has progressed in several countries through integrated policies and strong incentives, Brazil faces a gap between national guidelines and their effective implementation at the municipal level. The documentary analysis revealed that the National Urban Mobility Policy (PNMU), established in 2012, still does not fully incorporate new transport technologies, such as electromobility. Additionally, only 14 out of 27 (52%) state capitals have an Urban Mobility Plan formally approved by law, highlighting both a delay in adapting cities to sustainable guidelines and a lack of synergy between urban and energy policies.
- Existing regulations primarily focus on individual electric vehicles, while strategies for public transport electrification remain insufficiently robust. Current incentives and policies prioritize personal vehicle adoption, whereas large-scale, city-wide electromobility transitions demand a broader approach, including public and shared transport solutions.
- Stakeholder engagement and public awareness play a crucial role in the adoption of electromobility policies. Social acceptance and information dissemination about the benefits of electric mobility are critical factors for a successful transition. The study identified a lack of integration among the transport, urban planning, and energy sectors in Brazil, which hinders the advancement of electromobility initiatives, reinforcing the need for coordinated strategies across different levels of governance and industry stakeholders.
- By systematically identifying key attributes and analyzing their interconnections, this study provides a structured framework that enhances the understanding of how electromobility can be effectively integrated into urban planning. This framework serves as a foundation for developing more efficient policies that address infrastructure planning, regulatory mechanisms, and governance strategies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SLR | Systematic Literature Review |
UN | United Nations |
SDGs | Sustainable Development Goals |
APOEM | Action Plan Focused on Electric Mobility |
AI | Artificial Intelligence |
IoT | Internet of Things |
PNMU | National Urban Mobility Policy |
PMU | Urban Mobility Plan |
MOVER | Green Mobility and Innovation Program |
FNDIT | National Fund for Industrial and Technological Development |
NIB | New Industry Brazil Program |
GTHA | Greater Toronto and Hamilton Area |
PPPs | Public–Private Partnerships |
SUMP | Sustainable Urban Mobility Plan |
R&D | Research and Development |
References
- ONU—Organização das Nações Unidas Objetivos de Desenvolvimento Sustentável. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 20 November 2024).
- PNME—Plataforma Nacional de Mobilidade Elétrica. 2o Anuário Brasileiro de Mobilidade Elétrica: O Brasil Em Direção Ao Mix de Tecnologias Para a Descarbonização e Digitalização Dos Transportes. 2023. Available online: https://pnme.org.br/biblioteca/2o-anuario-brasileiro-da-mobilidade-eletrica/ (accessed on 20 November 2024).
- Pietrzak, K.; Pietrzak, O. Environmental Effects of Electromobility in a Sustainable Urban Public Transport. Sustainability 2020, 12, 1052. [Google Scholar] [CrossRef]
- Santos, G.; Smith, O. Electric Vehicles and the Energy Generation Mix in the UK: 2020–2050. Energy Rep. 2023, 9, 5612–5627. [Google Scholar] [CrossRef]
- Anthony, B., Jr. Data Enabling Digital Ecosystem for Sustainable Shared Electric Mobility-as-a-Service in Smart Cities-an Innovative Business Model Perspective. Res. Transp. Bus. Manag. 2023, 51, 101043. [Google Scholar] [CrossRef]
- De Abreu, V.H.S.; D’Agosto, M.d.A.; Angelo, A.C.M.; Marujo, L.G.; Carneiro, P.J.P. Action Plan Focused on Electric Mobility (APOEM): A Tool for Assessment of the Potential Environmental Benefits of Urban Mobility. Sustainability 2023, 15, 10218. [Google Scholar] [CrossRef]
- Nigro, M.; Ferrara, M.; De Vincentis, R.; Liberto, C.; Valenti, G. Data Driven Approaches for Sustainable Development of E-Mobility in Urban Areas. Energies 2021, 14, 3949. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, H.; Liu, Q.; Ma, L.; Song, J. An Urban Planning Perspective on Enhancing Electric Vehicle (EV) Adoption: Evidence from Beijing. Travel Behav. Soc. 2024, 34, 100712. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Vernez-Moudon, A.; Reis, R.; Turrell, G.; Dannenberg, A.L.; Badland, H.; Foster, S.; Lowe, M.; Sallis, J.F.; Stevenson, M.; et al. City Planning and Population Health: A Global Challenge. Lancet 2016, 388, 2912–2924. [Google Scholar] [CrossRef]
- Delponte, I. Sustainable Urban Mobility Plan and the Electric Mobility Challenge. First Results of the Planning Process in Genoa (IT). TeMA J. Land Use Mobil. Environ. 2021, 14, 303–318. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Long, Y.; Wu, W.; Liu, J.; Jiang, Y. Long-Term Implications of Electric Vehicle Penetration in Urban Decarbonization Scenarios: An Integrated Land Use–Transport–Energy Model. Sustain. Cities Soc. 2021, 68, 102800. [Google Scholar] [CrossRef]
- Marotta, A.; Lodi, C.; Julea, A.; Gómez Vilchez, J.J. European Governments’ Electromobility Plans: An Assessment with a Focus on Infrastructure Targets and Vehicle Estimates until 2030. Energy Effic. 2023, 16, 92. [Google Scholar] [CrossRef]
- Martinez, N.; Terrazas-Santamaria, D. Beyond Nearshoring: The Political Economy of Mexico’s Emerging Electric Vehicle Industry. Energy Policy 2024, 195, 114385. [Google Scholar] [CrossRef]
- Grangeia, C.; Santos, L. Uncertainties About the Transport Planning in Brazil in the Context of Climate Change: Tradition (Biofuels) or Innovation (Electric Mobility)? Sustain. Dev. Goals Ser. 2023, 3, 251–263. [Google Scholar] [CrossRef]
- Andrade, N.F.; De Lima, F.B.; Soliani, R.D.; De Souza Oliveira, P.R.; De Oliveira, D.A.; Siqueira, R.M.; Da Silva Nora, L.A.R.; De MacÊdo, J.J.S. Urban mobility: A review of challenges and innovations for sustainable transportation in Brazil. Rev. Gest. Soc. Ambient. 2023, 17, 1–14. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Gough, D.; Oliver, S.; Thomas, J. An Introduction to Systematic Reviews; SAGE Publications: Thousand Oaks, CA, USA, 2012; ISBN 9781446289365. [Google Scholar]
- Morocho-Chicaiza, W.; Barragán-Escandón, A.; Zalamea-León, E.; Ochoa-Correa, D.; Terrados-Cepeda, J.; Serrano-Guerrero, X. Identifying Locations for Electric Vehicle Charging Stations in Urban Areas through the Application of Multicriteria Techniques. Energy Rep. 2024, 12, 1794–1809. [Google Scholar] [CrossRef]
- Schmitz Goncalves, D.N.; de Mello Bandeira, R.A.; da Costa, M.G.; Goes, G.V.; de Assis, T.F.; D’Agosto, M.d.A.; de Almeida, I.R.; de Freitas, R.R. A Multitier Approach to Estimating the Energy Efficiency of Urban Passenger Mobility. Sustainability 2020, 12, 10263. [Google Scholar] [CrossRef]
- Silva, E.F.F.; de Melo, W.C.; Brasil, A.C.d.M. A Submodel as a Plug-in for the Assessment of Energy Consumption and CO2 Emissions in Urban Mobility Plans. Sustainability 2023, 15, 16237. [Google Scholar] [CrossRef]
- Newman, P. Peak Car Use—What Does It Mean for Urban Design and Planning? Proc. Inst. Civ. Eng. Urban Des. Plan. 2012, 165, 197–200. [Google Scholar] [CrossRef]
- Sechilariu, M.; Molines, N.; Richard, G.; Martell-Flores, H.; Locment, F.; Baert, J. Electromobility Framework Study: Infrastructure and Urban Planning for EV Charging Station Empowered by PV-Based Microgrid. IET Electr. Syst. Transp. 2019, 9, 176–185. [Google Scholar] [CrossRef]
- Nanaki, E.A.; Xydis, G.A.; Koroneos, C.J. Electric Vehicle Deployment in Urban Areas. Indoor Built Environ. 2016, 25, 1065–1074. [Google Scholar] [CrossRef]
- Colombo, C.G.; Longo, M.; Yaici, W.; Borghetti, F. Preliminary Assessment for a Sustainable and Integrated Solar-Powered Transport System in Asmara–Eritrea. Eur. Transp.—Trasp. Eur. 2023, 2023, 1–25. [Google Scholar] [CrossRef]
- Huang, B.; Xing, K.; Ness, D.; Liao, L.; Huang, K.; Xie, P.; Huang, J. Rethinking Carbon–Neutral Built Environment: Urban Dynamics and Scenario Analysis. Energy Build. 2022, 255, 111672. [Google Scholar] [CrossRef]
- Lin, H.; Wang, W.; Zou, Y.; Chen, H. An Evaluation Model for Smart Grids in Support of Smart Cities Based on the Hierarchy of Needs Theory. Glob. Energy Interconnect. 2023, 6, 634–644. [Google Scholar] [CrossRef]
- Cortese, T.T.P.; de Almeida, J.F.S.; Batista, G.Q.; Storopoli, J.E.; Liu, A.; Yigitcanlar, T. Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review. Energies 2022, 15, 2382. [Google Scholar] [CrossRef]
- Schwedes, O.; Hoor, M. Integrated Transport Planning: From Supply- to Demand-Oriented Planning. Considering the Benefits. Sustainability 2019, 11, 5900. [Google Scholar] [CrossRef]
- Harris, D.; Da Silva, F.L.; Su, W.; Glatt, R. A Review on Simulation Platforms for Agent-Based Modeling in Electrified Transportation. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1131–1147. [Google Scholar] [CrossRef]
- Bustos-Turu, G.; van Dam, K.H.; Acha, S.; Shah, N. An Agent-Based Decision Support Framework for a Prospective Analysis of Transport and Heat Electrification in Urban Areas. Energies 2023, 16, 6312. [Google Scholar] [CrossRef]
- Stinder, A.K.; Schelte, N.; Severengiz, S. Application of Mixed Methods in Transdisciplinary Research Projects on Sustainable Mobility. Sustainability 2022, 14, 6867. [Google Scholar] [CrossRef]
- Jaber, A.; Csonka, B. Assessment of Hungarian Large Cities Readiness in Adopting Electric Bike Sharing System. Discov. Sustain. 2024, 5, 203. [Google Scholar] [CrossRef]
- Mazza, A.; Russo, A.; Chicco, G.; Di Martino, A.; Colombo, C.G.; Longo, M.; Ciliento, P.; De Donno, M.; Mapelli, F.; Lamberti, F. Categorization of Attributes and Features for the Location of Electric Vehicle Charging Stations. Energies 2024, 17, 3920. [Google Scholar] [CrossRef]
- Iglesias, I.; Valera, J.J. CITYELEC: A Global Solution Approach for the Electrification of Urban Mobility in Spain. World Electr. Veh. J. 2011, 4, 927–932. [Google Scholar]
- Anastasiadou, K.; Gavanas, N.; Pitsiava-latinopoulou, M.; Bekiaris, E. Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-criteria Analysis Approach. Energies 2021, 14, 5269. [Google Scholar] [CrossRef]
- Zhang, C.; Lian, J.; Min, H.; Li, M. Shanghai as a Model: Research on the Journey of Transportation Electrification and Charging Infrastructure Development. Sustainability 2025, 17, 91. [Google Scholar] [CrossRef]
- Makaremi, S. A Multi-Output Deep Learning Model for Energy Demand and Port Availability Forecasting in EV Charging Infrastructure. Energy 2025, 317, 134582. [Google Scholar] [CrossRef]
- Carra, M.; Maternini, G.; Barabino, B. On Sustainable Positioning of Electric Vehicle Charging Stations in Cities: An Integrated Approach for the Selection of Indicators. Sustain. Cities Soc. 2022, 85, 104067. [Google Scholar] [CrossRef]
- Awasthi, A.; Omrani, H.; Gerber, P. Investigating Ideal-Solution Based Multicriteria Decision Making Techniques for Sustainability Evaluation of Urban Mobility Projects. Transp. Res. Part A Policy Pract. 2018, 116, 247–259. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, L.; Zhang, Z.; Sun, S.; Guo, L. Examining the Correlation of Household Electric Vehicle Ownership: Insights for Emerging Mobility and Planning. J. Transp. Geogr. 2024, 118, 103937. [Google Scholar] [CrossRef]
- Mahrez, Z.; Sabir, E.; Badidi, E.; Saad, W.; Sadik, M. Smart Urban Mobility: When Mobility Systems Meet Smart Data. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6222–6239. [Google Scholar] [CrossRef]
- Ai, N.; Zheng, J.; Chen, X. Electric Vehicle Park-Charge-Ride Programs: A Planning Framework and Case Study in Chicago. Transp. Res. Part D-Transp. Environ. 2018, 59, 433–450. [Google Scholar] [CrossRef]
- Carlton, G.J.; Sultana, S. Electric Vehicle Charging Station Accessibility and Land Use Clustering: A Case Study of the Chicago Region. J. Urban Mobil. 2022, 2, 100019. [Google Scholar] [CrossRef]
- Manzolli, J.A.; Trovão, J.P.; Henggeler Antunes, C. Scenario-Based Multi-Criteria Decision Analysis for Rapid Transit Systems Implementation in an Urban Context. eTransportation 2021, 7, 100101. [Google Scholar] [CrossRef]
- Mendoza, J.-M.F.; Sanyé-Mengual, E.; Angrill, S.; García-Lozano, R.; Feijoo, G.; Josa, A.; Gabarrell, X.; Rieradevall, J. Development of Urban Solar Infrastructure to Support Low-Carbon Mobility. Energy Policy 2015, 85, 102–114. [Google Scholar] [CrossRef]
- Koman, G.; Toman, D.; Jankal, R.; Krúpová, S. Public Transport Infrastructure with Electromobility Elements at the Smart City Level to Support Sustainability. Sustainability 2024, 16, 1091. [Google Scholar] [CrossRef]
- Sugar, L.; Kennedy, C. A Low Carbon Infrastructure Plan for Toronto, Canada. Can. J. Civ. Eng. 2013, 40, 86–96. [Google Scholar] [CrossRef]
- König, A.; Gebhardt, L.; Stark, K.; Schuppan, J. A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany. Sustainability 2022, 14, 2639. [Google Scholar] [CrossRef]
- Vargas-Maldonado, R.C.; Lozoya-Reyes, J.G.; Ramírez-Moreno, M.A.; Lozoya-Santos, J.d.J.; Ramírez-Mendoza, R.A.; Pérez-Henríquez, B.L.; Velasquez-Mendez, A.; Vargas, J.F.J.; Narezo-Balzaretti, J. Conscious Mobility for Urban Spaces: Case Studies Review and Indicator Framework Design. Appl. Sci. 2023, 13, 333. [Google Scholar] [CrossRef]
- Pokorska, A.; Wiśniewski, T. Electromobility as a Challenge of Modern City Logistics—Indicator Analysis. Energies 2024, 17, 3167. [Google Scholar] [CrossRef]
- Muto, S.; Toyama, H.; Takai, A. Evaluation of Transport and Location Policies to Realize the Carbon-Free Urban Society. Sustainability 2022, 14, 14. [Google Scholar] [CrossRef]
- Modarelli, G.; Sadraei, R.; Rainero, C. How to Perceive Sustainable Moving and Smart Mobility Today?: A Cross-National Comparative Longitudinal Perspective and the Controversy of Alternative Transport Systems. J. Clean. Prod. 2024, 468, 143121. [Google Scholar] [CrossRef]
- Driscoll, P.A.; Theodórsdóttir, Á.H.; Richardson, T.; Mguni, P. Is the Future of Mobility Electric? Learning from Contested Storylines of Sustainable Mobility in Iceland. Eur. Plan. Stud. 2012, 20, 627–639. [Google Scholar] [CrossRef]
- Schwedes, O. Planning Sustainable E-Mobility. WIT Trans. Ecol. Environ. 2011, 150, 727–736. [Google Scholar] [CrossRef]
- Bigotte, J.F.; Ferrao, F. The Future Role of Shared E-Scooters in Urban Mobility: Preliminary Findings from Portugal. Sustainability 2023, 15, 16467. [Google Scholar] [CrossRef]
- Jardim, B.; Neto, M.d.C.; Calçada, P. Urban Dynamic in High Spatiotemporal Resolution: The Case Study of Porto. Sustain. Cities Soc. 2023, 98, 104867. [Google Scholar] [CrossRef]
- Budnitz, H.; Jaskólski, M.; Knapskog, M.; Lis-Plesińska, A.; Schmidt, F.; Szymanowski, R.; van der Craats, J.; Schwanen, T. Multi-Level Governance and Modal Thinking: Tensions in Electric Mobility Transitions in European Cities. Transp. Policy 2025, 160, 63–72. [Google Scholar] [CrossRef]
- Gulino, M.-S.; Papini, S.; Zonfrillo, G.; Miklis, P.; Unger, T.; Vangi, D. Enhancing Road Safety of PLEVs by Novel Vehicle Concepts: A Comprehensive Investigation on Regulations, Accident Statistics, and Perception of Riders in Europe. Heliyon 2025, 11, e41129. [Google Scholar] [CrossRef] [PubMed]
- Teusch, J.; Saavedra, B.N.; Scherr, Y.O.; Müller, J.P. Strategic Planning of Geo-Fenced Micro-Mobility Facilities Using Reinforcement Learning. Transp. Res. Part E Logist. Transp. Rev. 2025, 194, 103872. [Google Scholar] [CrossRef]
- Kazempour, M.; Sabboubeh, H.; Pirouz Moftakhari, K.; Najafi, R.; Fusco, G. GIS-Based Geospatial Analysis for Identifying Optimal Locations of Residential on-Street Electric Vehicle Charging Points in Birmingham, UK. Sustain. Cities Soc. 2025, 120, 105988. [Google Scholar] [CrossRef]
- Loorbach, D.A. Designing Radical Transitions: A Plea for a New Governance Culture to Empower Deep Transformative Change. City, Territ. Archit. 2022, 9, 30. [Google Scholar] [CrossRef]
- Jacyna, M.; Zochowska, R.; Sobota, A.; Wasiak, M. Decision Support for Choosing a Scenario for Organizing Urban Transport System with Share of Electric Vehicles. Sci. J. Silesian Univ. Technol. Ser. Transp. 2022, 117, 69–89. [Google Scholar] [CrossRef]
- Clifton, K.; Gregor, B. Development of Decision Tool for Strategies to Reduce Greenhouse Gas Emissions. Transp. Res. Rec. 2012, 2291, 124–134. [Google Scholar] [CrossRef]
- Ruoso, A.C.; Ribeiro, J.L.D. The Influence of Countries’ Socioeconomic Characteristics on the Adoption of Electric Vehicle. Energy Sustain. Dev. 2022, 71, 251–262. [Google Scholar] [CrossRef]
- Có, M.; Consoni, F.; Carneiro, M.C.; Fernandes, G.; Nunes, R.B.; Donadel, C. Understanding Business Models in the Brazilian Context of Electric Mobility: A Proposed Framework. Urban Sci. 2024, 8, 92. [Google Scholar] [CrossRef]
- da Paixão, J.L.; Danielsson, G.H.; da Silva, L.N.F.; Sausen, J.P.; da Rosa Abaide, A.; Parqui, W.R. Brazilian Electromobility: A Brief Overview and Early Outcomes from an R&D Project. In Proceedings of the 2024 Workshop on Communication Networks and Power Systems (WCNPS), Brasilia, Brazil, 12–13 December 2024; pp. 1–6. [Google Scholar]
- Brasil Lei No 12.587; 2012. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12587.htm (accessed on 20 November 2024).
- Ministério das Cidades. Caderno de Referência Para Elaboração de Plano de Mobilidade Urbana; Ministério das Cidades: Brasília, Brazil, 2015; Available online: https://itdpbrasil.org/planmob/ (accessed on 20 November 2024).
- Brasil. Projeto de Lei No 1.743-A; 2023; pp. 1–9. Available online: https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra?codteor=2824711&filename=Avulso%20PL%201743/2023 (accessed on 28 February 2025).
- Associação Nacional das Empresas de Transportes Urbanos (NTU). Anuário NTU: 2023–2024; Associação Nacional das Empresas de Transportes Urbanos: Brasília, Brazil, 2024. [Google Scholar]
- PNME—Plataforma Nacional de Mobilidade Elétrica. 4o Anuário Brasileiro Da Mobilidade Elétrica: Desafios, Oportunidades e Políticas Públicas Para a Mobilidade Elétrica No Brasil. 2024. Available online: https://pnme.org.br/biblioteca/4o-anuario-brasileiro-da-mobilidade-eletrica/ (accessed on 28 February 2025).
- Ministério da Integração e do Desevolvimento Regional. Guia de Eletromobilidade; Ministério da Integração e do Desevolvimento Regional: Brasília, Brazil, 2021. [Google Scholar]
- Ministério do Desenvolvimento Regional, Banco Mundial. Caderno Técnico de Referência Para a Eletromobilidade Nas Cidades Brasileiras; Ministério do Desenvolvimento Regional, Banco Mundial: Washington, DC, USA, 2023. [Google Scholar]
- ITDP—Instituto de Políticas de Transporte e Desenvolvimento. Guia Para Programas Federais de Ônibus Elétricos No Brasil; Instituto de Políticas de Transporte e Desenvolvimento: Rio de Janeiro, Brazil, 2024. [Google Scholar]
- Brasil Lei No 14.902. 2024. Available online: https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2024/lei/l14902.htm (accessed on 28 February 2025).
- Ministério das Comunicações Governo Federal Lança “Nova Indústria Brasil”. Available online: https://www.gov.br/mcom/pt-br/noticias/2024/janeiro/governo-federal-lanca-nova-industria-brasil (accessed on 28 February 2025).
Attributes | References |
---|---|
Alignment | [6,10,18,19,20,21] |
Sectoral Integration | [8,10,11,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
Transport infrastructure | [5,6,7,8,10,11,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60] |
Multi-sectoral Engagement | [10,11,21,22,28,31,33,35,41,42,46,49,54,61] |
Environmental sustainability | [6,10,11,19,20,23,24,25,26,29,31,33,34,35,37,39,41,42,43,44,45,47,48,49,50,51,52,53,56,57,58,60,61,62] |
Urbanism | [7,8,10,11,21,23,24,29,30,33,34,36,39,40,43,44,45,51,53,54,59,61,62] |
User profiles | [8,22,24,27,28,32,33,34,37,38,40,43,48,50,57,60,63] |
Technologies | [5,19,31,36,41,45,46,48,52,60] |
Governance | [5,19,27,28,32,37,41,46,47,49,52,53,54,55,57,58,61,62,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves da Silveira, C.; Rediske, G.; Oliveira da Silva, T.; Brum Rosa, C. Attributes of Electric Mobility Integration into Urban Planning: Perspectives and the Brazilian Context. World Electr. Veh. J. 2025, 16, 188. https://doi.org/10.3390/wevj16040188
Alves da Silveira C, Rediske G, Oliveira da Silva T, Brum Rosa C. Attributes of Electric Mobility Integration into Urban Planning: Perspectives and the Brazilian Context. World Electric Vehicle Journal. 2025; 16(4):188. https://doi.org/10.3390/wevj16040188
Chicago/Turabian StyleAlves da Silveira, Caroline, Graciele Rediske, Thaiara Oliveira da Silva, and Carmen Brum Rosa. 2025. "Attributes of Electric Mobility Integration into Urban Planning: Perspectives and the Brazilian Context" World Electric Vehicle Journal 16, no. 4: 188. https://doi.org/10.3390/wevj16040188
APA StyleAlves da Silveira, C., Rediske, G., Oliveira da Silva, T., & Brum Rosa, C. (2025). Attributes of Electric Mobility Integration into Urban Planning: Perspectives and the Brazilian Context. World Electric Vehicle Journal, 16(4), 188. https://doi.org/10.3390/wevj16040188