Construction and Method Study of the State of Charge Model for Lithium-Ion Packs in Electric Vehicles Using Ternary Lithium Packs as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of a Ternary LPA Model
2.2. Estimation and Algorithm Construction of a Ternary LPA SOC on the Ground of UKF
2.3. SOC Estimation and Algorithm Construction for the Ternary LPA on the Ground of UPF
3. Results
3.1. Analysis of SOC Estimation for the Ternary LPA on the Ground of UKF
3.2. Analysis of SOC Estimation for the Ternary LPA on the Ground of UPF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. Forecasting multi-step-ahead reservoir monthly and daily inflow using machine learning models based on different scenarios. Appl. Intell. 2022, 53, 10893–10916. [Google Scholar] [CrossRef]
- Caian, G.; Yanping, Z.; Yang, Y. Comparison of two combined algorithms for SOC estimation of ternary lithium battery. J. Chongqing Univ. Technol. 2022, 36, 29–35. [Google Scholar]
- Ming, T.T.; Zhao, J.; Wang, X.L.; Wang, K. SOC estimation of a lithium battery under high pulse rate condition based on improved LSTM. Power Syst. Prot. Control 2021, 49, 144–150. [Google Scholar]
- Wang, Z.; Wang, S.; Yu, C.; Qiao, J. Improved Long Short-Term Memory: Statistical Regression Model for High Precision SOC Estimation of Lithium-Ion Batteries Adaptive to Complex Current Variation Conditions. J. Electrochem. Soc. 2023, 170, 050521. [Google Scholar] [CrossRef]
- Hao, X.; Wang, S.; Fan, Y.; Xie, Y.; Fernandez, C. An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation. J. Energy Storage 2023, 59, 106478. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Karim, T.F.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Miah, S.; Mahlia, T.I. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook. J. Clean. Prod. 2021, 292, 126044. [Google Scholar] [CrossRef]
- Xin, S.; Shan, H.; Vilsen, S.B. A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery. Appl. Energy 2021, 300, 117346. [Google Scholar]
- Li, P.; Xia, X.; Guo, J. A review of the life cycle carbon footprint of electric vehicle batteries. Sep. Purif. Technol. 2022, 296, 121389. [Google Scholar] [CrossRef]
- Bhattacharyya, H.S.; Choudhury, A.B.; Chanda, C.K. On-road estimation of state of charge of lithium-ion battery by extended and dual extended Kalman filter considering sensor bias. Int. J. Energy Res. 2022, 46, 15182–15197. [Google Scholar] [CrossRef]
- Juqiang, C.F.; Long, W.; Kaifeng, H. Online SOC estimation of a lithium-ion battery based on FFRLS and AEKF. Energy Storage Sci. Technol. 2021, 10, 242–249. [Google Scholar]
- Sheikh, S.S.; Anjum, M.; Khan, M.A.; Hassan, S.A.; Khalid, H.A.; Gastli, A.; Ben-Brahim, L. A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach. Energies 2020, 13, 3658. [Google Scholar] [CrossRef]
- John, S.J.; Suma, P.; Athira, T.M. Multiset modules. J. Comput. Cogn. Eng. 2022, 1, 37–41. [Google Scholar] [CrossRef]
- Alcantud, J.C.R. Convex soft geometries. J. Comput. Cogn. Eng. 2022, 1, 2–12. [Google Scholar] [CrossRef]
- Camargos, P.H.; dos Santos, P.H.; dos Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Schaltz, E.; Stroe, D.-I.; Norregaard, K.; Ingvardsen, L.S.; Christensen, A. Incremental Capacity Analysis Applied on Electric Vehicles for Battery State-of-Health Estimation. IEEE Trans. Ind. Appl. 2021, 57, 1810–1817. [Google Scholar] [CrossRef]
- Baccouche, I.; Jemmali, S.; Manai, B.; Nikolian, A.; Omar, N.; Ben Amara, N.E. Li-ion battery modeling and characterization: An experimental overview on NMC battery. Int. J. Energy Res. 2022, 46, 3843–3859. [Google Scholar] [CrossRef]
- Houache, M.S.; Yim, C.H.; Karkar, Z.; Abu-Lebdeh, Y. On the current and future outlook of battery chemistries for electric vehicles—Mini review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Dunn, J.; Slattery, M.; Kendall, A.; Ambrose, H.; Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ. Sci. Technol. 2021, 55, 5189–5198. [Google Scholar] [CrossRef]
- Shafique, M.; Akbar, A.; Rafiq, M.; Azam, A.; Luo, X. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Waste Manag. Res. 2023, 41, 376–388. [Google Scholar] [CrossRef]
- Tran, M.K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- White, J.L.; Gittleson, F.S.; Homer, M.; El Gabaly, F. Nickel and Cobalt Oxidation State Evolution at Ni-Rich NMC Cathode Surfaces during Treatment. J. Phys. Chem. C 2020, 124, 16508–16514. [Google Scholar] [CrossRef]
- Phillip, N.D.; Westover, A.S.; Daniel, C.; Veith, G.M. Structural Degradation of High Voltage Lithium Nickel Manganese Cobalt Oxide (NMC) Cathodes in Solid-State Batteries and Implications for Next Generation Energy Storage. ACS Appl. Energy Mater. 2020, 3, 1768–1774. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, J.; Xu, Y.; Wei, C.; Rahman, M.M.; Nordlund, D.; Liu, Y.; Lin, F. Resolving Charge Distribution for Compositionally Heterogeneous Battery Cathode Materials. Nano Lett. 2022, 22, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Luo, X.; Zhang, Z.; Meng, F.; Yang, J. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J. Clean. Prod. 2020, 273, 123006. [Google Scholar] [CrossRef]
- Li, L.; Ju, X.; Zhou, X.; Peng, Y.; Zhou, Z.; Cao, B.; Yang, L. Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents. Materials 2021, 14, 4740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.S. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J. Energy Storage 2022, 45, 103759. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; He, X.; Li, Q.; Lian, C.; Wang, Z. Effects of Structure Parameters on the Thermal Performance of a Ternary Lithium-Ion Battery under Fast Charging Conditions. Energy Fuels 2020, 34, 8891–8904. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, T.; Huang, Z.; Wu, J.; Zhou, H.; Ma, M.; Xu, J.; Wang, Z.; Li, H.; Sun, J.; et al. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test. J. Energy Storage 2021, 38, 102519. [Google Scholar] [CrossRef]
- Liu, W.; Xu, M.; Zhu, M. Design of a niobium tungsten oxide/C micro-structured electrode for fast charging lithium-ion batteries. Inorg. Chem. Front. 2021, 8, 3998–4005. [Google Scholar] [CrossRef]
- Yetik, O.; Karakoc, T.H. Three-dimensional thermal study on lithium-ion batteries in a hybrid aircraft: Numerical and experimental investigations. SAE Int. J. Aerosp. 2020, 13, 213–224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Liu, H.; Huang, H. Construction and Method Study of the State of Charge Model for Lithium-Ion Packs in Electric Vehicles Using Ternary Lithium Packs as an Example. World Electr. Veh. J. 2024, 15, 43. https://doi.org/10.3390/wevj15020043
Hu Y, Liu H, Huang H. Construction and Method Study of the State of Charge Model for Lithium-Ion Packs in Electric Vehicles Using Ternary Lithium Packs as an Example. World Electric Vehicle Journal. 2024; 15(2):43. https://doi.org/10.3390/wevj15020043
Chicago/Turabian StyleHu, Yinquan, Heping Liu, and Hu Huang. 2024. "Construction and Method Study of the State of Charge Model for Lithium-Ion Packs in Electric Vehicles Using Ternary Lithium Packs as an Example" World Electric Vehicle Journal 15, no. 2: 43. https://doi.org/10.3390/wevj15020043
APA StyleHu, Y., Liu, H., & Huang, H. (2024). Construction and Method Study of the State of Charge Model for Lithium-Ion Packs in Electric Vehicles Using Ternary Lithium Packs as an Example. World Electric Vehicle Journal, 15(2), 43. https://doi.org/10.3390/wevj15020043