# Optimization Effect of the Improved Power System Integrating Composite Motors on the Energy Consumption of Electric Vehicles

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Optimization of Electric Vehicle Energy Efficiency by Integrating Composite Motor and Improved Power System

#### 3.1. Configuration Optimization Design of Integrated Composite Motor and Electric Vehicle Power Systems

#### 3.2. Improved Power System-Based Optimal Control Strategy for Energy Efficiency

## 4. Configuration Testing and Energy Consumption Simulation Analysis

#### 4.1. Configuration Optimization Testing

#### 4.2. Energy Consumption Simulation Analysis

## 5. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Wang, T.; Luo, H.; Zeng, X.; Yu, Z.; Liu, A.; Sangaiah, A. Mobility based trust evaluation for heterogeneous electric vehicles network in smart cities. IEEE Trans. Intell. Transp. Syst.
**2020**, 22, 1797–1806. [Google Scholar] [CrossRef] - Gryparis, E.; Papadopoulos, P.; Leligou, H.C.; Psomopoulos, C.S. Electricity demand and carbon emission in power generation under high penetration of electric vehicles. A European Union perspective. Energy Rep.
**2020**, 6, 475–486. [Google Scholar] [CrossRef] - Yang, C.; Zha, M.; Wang, W.; Liu, K.; Xiang, C. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intell. Transp. Syst.
**2020**, 14, 702–711. [Google Scholar] [CrossRef] - Wu, J.; Zhang, N.; Tan, D.; Chang, J.; Shi, W. A robust online energy management strategy for fuel cell/battery hybrid electric vehicles. Int. J. Hydrogen Energy
**2020**, 45, 14093–14107. [Google Scholar] [CrossRef] - Patil, H.; Kalkhambkar, V.N. Grid integration of electric vehicles for economic benefits: A review. J. Mod. Power Syst. Clean Energy
**2020**, 9, 13–26. [Google Scholar] [CrossRef] - Li, Y.; Han, M.; Yang, Z.; Li, G. Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: A bi-level approach. IEEE Trans. Sustain. Energy
**2021**, 12, 2321–2331. [Google Scholar] [CrossRef] - Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A review on electric vehicles: Technologies and challenges. Smart Cities
**2021**, 4, 372–404. [Google Scholar] [CrossRef] - Alimujiang, A.; Jiang, P. Synergy and co-benefits of reducing CO
_{2}and air pollutant emissions by promoting electric vehicles—A case of Shanghai. Energy Sustain. Dev.**2020**, 55, 181–189. [Google Scholar] [CrossRef] - Cunanan, C.; Tran, M.K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, M. A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technol.
**2021**, 3, 474–489. [Google Scholar] [CrossRef] - Zhao, X.; Ye, Y.; Ma, J.; Shi, P.; Chen, H. Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions. Environ. Sci. Pollut. Res.
**2020**, 27, 37395–37409. [Google Scholar] [CrossRef] - Modi, S.; Bhattacharya, J.; Basak, P. Estimation of energy consumption of electric vehicles using deep convolutional neural network to reduce driver’s range anxiety. ISA Trans.
**2020**, 98, 454–470. [Google Scholar] [CrossRef] [PubMed] - Alateef, S.; Thomas, N. Energy consumption estimation for electric vehicles using routing API data. In European Workshop on Performance Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 37–53. [Google Scholar]
- Albatayneh, A.; Assaf, M.N.; Alterman, D.; Jaradat, M. Comparison of the overall energy efficiency for internal combustion engine vehicles and electric vehicles. Rigas Teh. Univ. Zinat. Raksti
**2020**, 24, 669–680. [Google Scholar] [CrossRef] - Basso, R.; Kulcsár, B.; Sanchez-Diaz, I. Electric vehicle routing problem with machine learning for energy prediction. Transp. Res. Part B Methodol.
**2021**, 145, 24–55. [Google Scholar] [CrossRef] - Muduli, U.R.; Beig, A.R.; Al Jaafari, K.; Alsawal, J.Y.; Behera, B.K. Interrupt-free operation of dual-motor four-wheel drive electric vehicle under inverter failure. IEEE Trans. Transp. Electrif.
**2020**, 7, 329–338. [Google Scholar] [CrossRef] - Tu, Z.; Fei, F.; Deng, X. Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings. IEEE Robot. Autom. Lett.
**2020**, 5, 4194–4201. [Google Scholar] [CrossRef] - Jafari, M.; Korpås, M.; Botterud, A. Power system decarbonization: Impacts of energy storage duration and interannual renewables variability. Renew. Energy
**2020**, 156, 1171–1185. [Google Scholar] [CrossRef] - Mohammad-Alikhani, A.; Mahmoudi, A.; Khezri, R.; Kahourzade, S. Multiobjective optimization of system configuration and component capacity in an AC minigrid hybrid power system. IEEE Trans. Ind. Appl.
**2022**, 58, 4158–4170. [Google Scholar] [CrossRef] - Sun, G.J.; Yun, J.H.; Cheon, M.W. Parallel Switch Configuration for High Voltage DC switching to secure PV power system safety. Trans. Electr. Electron. Mater.
**2021**, 22, 108–113. [Google Scholar] [CrossRef] - Vishnuram, P.; P., S.; R., N.; K., V.; Nastasi, B. Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy. Energies
**2023**, 16, 1731. [Google Scholar] [CrossRef] - Deepak, K.; Frikha, M.A.; Benômar, Y.; El Baghdadi, M.; Hegazy, O. In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends. Energies
**2023**, 16, 3121. [Google Scholar] [CrossRef] - Wang, X.; Cheng, M.; Eaton, J.; Hsieh, C.J.; Wu, S.F. Fake node attacks on graph convolutional networks. J. Comput. Cogn. Eng.
**2022**, 1, 165–173. [Google Scholar] [CrossRef]

Mode Type | Classification Criteria |
---|---|

Speed coupling mode | $\left\{\begin{array}{c}{x}_{1,1}^{2}+{x}_{1,2}^{2}\ne 0,{x}_{2,1}^{2}+{x}_{2,2}^{2}\ne 0\\ {y}_{1,1}\xb7{y}_{1,2}\ne 0,{y}_{2,1}\xb7{y}_{2,2}\ne 0\end{array}\right.$ |

Torque coupling mode | $\left\{\begin{array}{c}{x}_{1,1}\xb7{x}_{1,2}\ne 0,{x}_{2,1}\xb7{x}_{2,2}\ne 0\\ {y}_{1,1}^{2}+{y}_{1,2}^{2}\ne 0,{y}_{2,1}^{2}+{y}_{2,2}^{2}\ne 0\end{array}\right.$ |

Motor 1 drive mode | $\left\{\begin{array}{c}{T}_{mg2}=0,{\omega}_{mg2}=0,{x}_{1,1}=1/{x}_{2,1}\ne 0,{x}_{1,2}={x}_{2,2}=0\\ {y}_{1,1}=1/{y}_{2,1}\ne 0,{y}_{1,2}={y}_{2,2}=0\end{array}\right.$ |

Motor 2 drive mode | $\left\{\begin{array}{c}{T}_{mg1}=0,{\omega}_{mg1}=0,{x}_{2,1}=0,{x}_{2,2}=-{x}_{1,2}/{x}_{1,1}\ne 0\\ {y}_{2,1}=0,{y}_{2,2}=-{y}_{1,2}/{y}_{1,1}\ne 0\end{array}\right.$ |

Configuration | Economy (kW·h/100 km) | Driving Range (km) | 0–100 km/h Acceleration Performance (s) | 0–120 km/h Acceleration Performance (s) |
---|---|---|---|---|

1 | 13.6109 | 510.601 | 8.2167 | 10.973 |

2 | 13.8769 | 500.799 | 8.872 | 11.7245 |

3 | 13.7968 | 503.801 | 9.9881 | 14.4306 |

4 | 14.4263 | 481.802 | 11.2671 | 15.9831 |

5 | 14.5174 | 478.701 | 10.8425 | 15.3319 |

Distributed Configuration | 14.5201 | 478.603 | 11.9614 | 16.5649 |

Reference configuration | 16.4998 | 421.197 | 10.9181 | 15.9099 |

Component | Speed Coupling Mode | Torque Coupling Mode | Motor 1 Drive Mode | Motor 2 Drive Mode |
---|---|---|---|---|

Motor 1 | A | A | A | B |

Motor 2 | A | A | B | A |

First clutch | A | A | B | A |

Second clutch | A | B | B | B |

Third clutch | B | A | A | B |

Brakes | B | A | A | A |

Control Strategy | DP Method | Rule-Based Approach | Research Design Methods | ||
---|---|---|---|---|---|

Route 1 | SOC | Initial | 0.9 | 0.9 | 0.9 |

Terminal | 0.7554 | 0.7412 | 0.7546 | ||

Power consumption | Energy Economy (kW·h/100 km) | 14.6843 | 15.3185 | 14.7271 | |

Range (km) | 474 | 458 | 471 | ||

Mileage difference ratio (%) | 99.79 | 95.87 | 99.86 | ||

Route 2 | SOC | Initial | 0.9 | 0.9 | 0.9 |

Terminal | 0.7537 | 0.7368 | 0.7514 | ||

Power consumption | Energy Economy (kW·h/100 km) | 14.6983 | 15.3623 | 14.7473 | |

Range (km) | 474 | 454 | 473 | ||

Mileage difference ratio (%) | 99.61 | 95.58 | 99.72 | ||

Route 3 | SOC | Initial | 0.9 | 0.9 | 0.9 |

Terminal | 0.8341 | 0.8217 | 0.8324 | ||

Power consumption | Energy Economy (kW·h/100 km) | 13.4024 | 14.1562 | 13.4472 | |

Range (km) | 518 | 492 | 515 | ||

Mileage difference ratio (%) | 99.53 | 94.73 | 99.59 | ||

Operational performance | Calculation time for predicting mileage intervals (s) | 2.68 | 0.32 | 0.13 | |

Applicative categories | Offline | Offline/Online | Offline/Online |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jia, L.
Optimization Effect of the Improved Power System Integrating Composite Motors on the Energy Consumption of Electric Vehicles. *World Electr. Veh. J.* **2023**, *14*, 257.
https://doi.org/10.3390/wevj14090257

**AMA Style**

Jia L.
Optimization Effect of the Improved Power System Integrating Composite Motors on the Energy Consumption of Electric Vehicles. *World Electric Vehicle Journal*. 2023; 14(9):257.
https://doi.org/10.3390/wevj14090257

**Chicago/Turabian Style**

Jia, Lijun.
2023. "Optimization Effect of the Improved Power System Integrating Composite Motors on the Energy Consumption of Electric Vehicles" *World Electric Vehicle Journal* 14, no. 9: 257.
https://doi.org/10.3390/wevj14090257