Li-Ion Battery State of Charge Prediction for Electric Vehicles Based on Improved Regularized Extreme Learning Machine
Abstract
:1. Introduction
2. Related Work
3. Battery State of Charge Prediction Based on Extreme Learning Machine Algorithm
3.1. Learning Algorithm for Regularized Extreme Learning Machine Based on Alternating Direction Multiplier Method
3.2. Recursive ADMM-Based Sparse Simple Learning Model for State of Charge Prediction
4. ADMM-ETLM Performance and Results Analysis of Sparse Neural Networks in Lithium Battery SOC Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Variable | Abbreviation |
Machine Learning | ML |
Extreme Learning Machine | ETLM |
State of Charge | SOC |
Li-ion Battery State of Charge | LBSC |
Feedforward Neuron Network | FNN |
Convex Function | CF |
Root Mean Square Error | RMSE |
Ridge Regression | RR |
Alternate Direction Method of Multipliers | ADMM |
Predicted Output Value | POV |
Hidden Layer | HL |
Sparse Neural Network | SNN |
Optimally Pruned Extreme Learning Machine | OP-ETLM |
Average Error | AE |
Long Short-Term Memory | LSTM |
Gated Recurrent Neural | GRN |
Command Query Second Order Cone Programming | CQSOCP |
Generalized Outlier Robustness-Extreme Learning Machine | GOR-ETLM |
University of California Irvine | UCI |
References
- Wu, Y.; Hui, Z.A.; Wang, Y.; Ran, L.C.; Yongqin, Z. Research on life cycle SOC estimation method of lithium-ion battery oriented to decoupling temperature. Energy Rep. 2022, 8, 4182–4195. [Google Scholar] [CrossRef]
- Zhang, Q.; Zha, X.G.; Wu, J.; Zhang, L.; Dai, W.; Ren, G.; Li, S.Q.; Ji, N.; Zhu, X.J.; Tian, F.W. PSO-LSSVM-based online SOC estimation for simulation substation battery. Struct. Durab. Health Monit. 2022, 16, 37–51. [Google Scholar] [CrossRef]
- Wang, Y.C.; Meng, D.W.; Chang, Y.J.; Zhou, Y.Q.; Li, R.; Zhang, X.Y. Research on online parameter identification and SOC estimation methods of lithium-ion battery model based on a robustness analysis. Int. J. Energy Res. 2021, 45, 21234–21253. [Google Scholar] [CrossRef]
- Li, R.Z.; Wang, H.; Dai, H.F.; Hong, J.C.; Tong, G.Y.; Chen, X.B. Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network. Energy 2022, 250, 123853. [Google Scholar] [CrossRef]
- Oyewole, I.; Chehade, A.; Kim, Y. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation. Appl. Energy 2022, 312, 118726. [Google Scholar] [CrossRef]
- She, C.Q.; Li, Y.; Zou, C.F.; Wik, T.; Wang, Z.; Sun, F. Offline and online blended machine learning for lithium-ion battery health state estimation. IEEE Trans. Transp. Electrif. 2022, 8, 1604–1618. [Google Scholar] [CrossRef]
- Liu, T.C.; Lekamalage, C.K.L.; Huang, G.B.; Lin, Z.P. Extreme learning machine for joint embedding and clustering. Neurocomputing 2018, 277, 78–88. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Chen, J.; Zhu, Z.F. Regularization incremental extreme learning machine with random reduced kernel for regression. Neurocomputing 2018, 321, 72–81. [Google Scholar] [CrossRef]
- Guo, L.H. Extreme learning machine with elastic net regularization. Intell. Autom. Soft Comput. 2020, 26, 421–427. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.L.; Nie, K.Z.; Qiao, J.F.; Li, B. Design of extreme learning machine with smoothed lo regularization. Mob. Netw. Appl. 2020, 25, 2434–2446. [Google Scholar] [CrossRef]
- Fan, Q.W.; Liu, T. Smoothing L_0 regularization for extreme learning machine. Math. Probl. Eng. Theory Methods Appl. 2020, 2020, 9175106. [Google Scholar]
- Zhang, Y.L.; Liu, H.W. A Barzilai and Borwein regularization feasible direction algorithm for convex nonlinear SOC programming with linear constraints. J. Comput. Appl. Math. 2022, 40, 52–68. [Google Scholar] [CrossRef]
- Silva, B.L.S.D.; Inaba, F.K.; Salles, E.O.T.; Ciarelli, P.M. Outlier robust extreme machine learning for multi-target regression. Expert Syst. Appl. 2020, 140, 112877. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.J.; Ouyang, M.G.; Han, X.B.; Lu, L.G.; Li, J.Q. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 2018, 377, 161–188. [Google Scholar] [CrossRef]
- Niu, W.J.; Feng, Z.K.; Cheng, C.T.; Zhou, J.Z. Forecasting daily runoff by extreme learning machine based on quantum-behaved particle swarm optimization. J. Hydrol. Eng. 2018, 23, 52–61. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, S.J.; He, B.; Sha, Q.X.; Shen, Y.; Yan, T.H.; Nian, R.; Lendasse, A. Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing 2018, 277, 53–64. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.L.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.F.; Sun, Q.; Kou, X.; Ma, W.T.; Zhang, H.; Liu, R. Noise immune state of charge estimation of li-ion battery via the extreme learning machine with mixture generalized maximum correntropy criterion. Energy 2022, 239, 122406. [Google Scholar] [CrossRef]
- Mustafaoglu, Z.; Koundal, D. Spam detection using bidirectional transformers and machine learning classifier algorithms. J. Comput. Cogn. Eng. 2022, 2, 5–9. [Google Scholar]
Name | Feature Data | Number of Training Samples | Test Data Sample Size |
---|---|---|---|
Wine quality white | 11 | 3000 | 1898 |
Parkinsons Telemonitoring | 22 | 2875 | 3000 |
Abalone | 8 | 2784 | 1393 |
Servo | 4 | 110 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Ren, G. Li-Ion Battery State of Charge Prediction for Electric Vehicles Based on Improved Regularized Extreme Learning Machine. World Electr. Veh. J. 2023, 14, 202. https://doi.org/10.3390/wevj14080202
Zhang B, Ren G. Li-Ion Battery State of Charge Prediction for Electric Vehicles Based on Improved Regularized Extreme Learning Machine. World Electric Vehicle Journal. 2023; 14(8):202. https://doi.org/10.3390/wevj14080202
Chicago/Turabian StyleZhang, Baozhong, and Guoqiang Ren. 2023. "Li-Ion Battery State of Charge Prediction for Electric Vehicles Based on Improved Regularized Extreme Learning Machine" World Electric Vehicle Journal 14, no. 8: 202. https://doi.org/10.3390/wevj14080202