Assessment of the On-Road Performance of Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) in Urban Road Conditions in the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Survey of the Test Site
2.2. Protocol for the On-Road Performance Test
2.3. Experimental Design
2.4. Data Collection Procedure
2.5. Analysis of Drive Cycle Patterns
2.6. Determination of Fuel and Energy Consumption and Fuel and Energy Economy
2.7. Estimation of Greenhouse Gas Emissions
- for gasoline-powered vehicles,
- for hybrid vehicles that use electricity,
3. Results and Discussion
3.1. Statistics on the Duration of Trips during the On-Road Tests
3.2. Drive Cycle Patterns
3.3. Fuel and Energy Consumption and Economy
3.4. Estimated Carbon Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, C.E.S. Transportation Options in a Carbon-constrained World: Hybrids, Plug-in Hybrids, Biofuels, Fuel Cell Electric Vehicles, and Battery Electric Vehicles. Int. J. Hydrogen Energy 2009, 34, 9279–9296. Available online: https://api.semanticscholar.org/CorpusID:94847990 (accessed on 8 September 2023). [CrossRef]
- Turrentine, T.S.; Delucchi, M.A.; Heffner, R.R.; Kurani, K.S.; Sun, Y. Quantifying the Benefits of Hybrid Vehicles. 2006. Available online: https://api.semanticscholar.org/CorpusID:108735917 (accessed on 8 September 2023).
- Sioshansi, R.; Denholm, P.L. Emissions Impacts and Benefits of Plug-in Hybrid Electric Vehicles and Vehicle-to-Grid Services. Environ. Sci. Technol. 2009, 43, 1199–1204. Available online: https://api.semanticscholar.org/CorpusID:32036576 (accessed on 8 September 2023). [CrossRef]
- Wu, B.; Offer, G.J. Environmental Impact of Hybrid and Electric Vehicles. 2017. Available online: https://api.semanticscholar.org/CorpusID:113662598 (accessed on 8 September 2023).
- Lang, J.; Cheng, S.; Zhou, Y.; Zhao, B.; Wang, H.; Zhang, S. Energy and Environmental Implications of Hybrid and Electric Vehicles in China. Energies 2013, 6, 2663–2685. Available online: https://api.semanticscholar.org/CorpusID:18291720 (accessed on 8 September 2023). [CrossRef]
- Patyal, V.S.; Kumar, R.; Kushwah, S. Modeling Barriers to the Adoption of Electric Vehicles: An Indian Perspective. Energy 2021, 237, 121554. Available online: https://api.semanticscholar.org/CorpusID:238389971 (accessed on 8 September 2023). [CrossRef]
- Tarei, P.K.; Chand, P.; Gupta, H. Barriers to the adoption of electric vehicles: Evidence from India. J. Clean. Prod. 2021, 291, 125847. Available online: https://api.semanticscholar.org/CorpusID:233598412 (accessed on 8 September 2023). [CrossRef]
- Bevis, K.; Smyth, A.; Walsh, S. Plugging the Gap—Can Planned Infrastructure Address Resistance to Adoption of Electric Vehicles? 2013. Available online: https://api.semanticscholar.org/CorpusID:108203926 (accessed on 8 September 2023).
- Shetty, D.K.; Shetty, S.; Raj Rodrigues, L.; Naik, N.; Maddodi, C.B.; Malarout, N.; Sooriyaperakasam, N. Barriers to Widespread Adoption of Plug-in Electric Vehicles in Emerging Asian Markets: An Analysis of Consumer Behavioral Attitudes and Perceptions. Cogent Eng. 2020, 7, 1796198. Available online: https://api.semanticscholar.org/CorpusID:226771696 (accessed on 8 September 2023). [CrossRef]
- Kongklaew, C.; Phoungthong, K.; Prabpayak, C.; Chowdhury, M.S.; Khan, I.; Yuangyai, N.; Yuangyai, C.; Techato, K. Barriers to Electric Vehicle Adoption in Thailand. Sustainability 2021, 13, 12839. Available online: https://api.semanticscholar.org/CorpusID:244513248 (accessed on 8 September 2023). [CrossRef]
- Nations, U. Global Technical Regulation on Worldwide Harmonized Light Vehicles Test Procedure (WLTP). 2014. Available online: https://www.transportpolicy.net/wp-content/uploads/2021/08/GTR-No-15.pdf (accessed on 5 September 2023).
- United States Environmental Protection Agency. Greenhouse Gases Equivalencies Calculator—Calculations and References. 2023. Available online: https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references (accessed on 10 June 2023).
- Manyashin, A.V. Research Methodology for Urban Vehicle Driving Cycles. Archit. Constr. Transp. 2021, 4, 67–73. [Google Scholar]
- Chauhan, B.P.; Joshi, G.J.; Parida, P. Driving Cycle Analysis to Identify Intersection Influence Zone for Urban Intersections Under Heterogeneous Traffic Condition. Sustain. Cities Soc. 2018, 41, 180–185. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, R. Driving Cycle Pattern for Cars in Medium Sized City of India. In Proceedings of the Eastern Asia Society for Transportation Studies; Fujiwara, A., Ed.; Eastern Asia Society for Transportation Studies: Tokyo, Japan; Volume 9, p. 224.
- Roh, C.-G.; Jeon, H.; Son, B. Do Heavy Vehicles Always Have a Negative Effect on Traffic Flow? Appl. Sci. 2021, 11, 5520. [Google Scholar] [CrossRef]
- Park, D.-W.; Papagiannakis, A.T.; Kim, I.T. Analysis of Dynamic Vehicle Loads Using Vehicle Pavement Interaction Model. KSCE J. Civ. Eng. 2014, 18, 2085–2092. [Google Scholar] [CrossRef]
- Rievaj, V.; Vrábel, J.; Synák, F.; Bartuška, L. The Effects of Vehicle Load on Driving Characteristics. Adv. Sci. Technol. Res. J. 2018, 12, 142–149. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Santini, D.J. Mass Impacts on Fuel Economies of Conventional vs. Hybrid Electric Vehicles. SAE Trans. 2004, 113, 258–276. Available online: https://api.semanticscholar.org/CorpusID:106527975 (accessed on 6 September 2023).
- Zahabi, S.A.H.; Miranda-Moreno, L.; Barla, P.; Vincent, B. Exploring the Contributing Factors of Fuel Economy of Hybrid-Electric Versus Conventional-Gasoline Vehicles in Real-World Conditions: A Case Study in Cold Cities in Urban Quebec. 2014. Available online: https://api.semanticscholar.org/CorpusID:106745133 (accessed on 6 September 2023).
- Orecchini, F.; Santiangeli, A.; Zuccari, F. Hybrid-electric System Truth Test: Energy Analysis of Toyota Prius IV in Real Urban Drive Conditions. Sustain. Energy Technol. Assess. 2020, 37, 100573. Available online: https://api.semanticscholar.org/CorpusID:212869761 (accessed on 6 September 2023). [CrossRef]
- Kim, N.; Rousseau, A.; Rask, E. Autonomie Model Validation with Test Data for 2010 Toyota Prius. 2012. Available online: https://api.semanticscholar.org/CorpusID:110843925 (accessed on 6 September 2023).
- Fontaras, G.; Pistikopoulos, P.; Samaras, Z. Experimental Evaluation of Hybrid Vehicle Fuel Economy and Pollutant Emissions Over Real-world Simulation Driving Cycles. Atmos. Environ. 2008, 42, 4023–4035. Available online: https://api.semanticscholar.org/CorpusID:108636606 (accessed on 6 September 2023). [CrossRef]
- Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D. Model Year 2010 (Gen 3) Toyota Prius Level 1 Testing Report. 2010. Available online: https://api.semanticscholar.org/CorpusID:109441042 (accessed on 6 September 2023).
- Rahmani, D.; Loureiro, M.L. Why is the Market for Hybrid Electric Vehicles (HEVs) Moving Slowly? PLoS ONE 2018, 13, e0193777. Available online: https://api.semanticscholar.org/CorpusID:4392272 (accessed on 6 September 2023). [CrossRef]
- Coffman, M.; Bernstein, P.I.; Wee, S. Electric Vehicles Revisited: A Review of Factors that Affect Adoption. Transp. Rev. 2017, 37, 79–93. Available online: https://api.semanticscholar.org/CorpusID:157803375 (accessed on 6 September 2023). [CrossRef]
- Al-Alawi, B.M.; Bradley, T.H. Review of Hybrid, Plug-in Hybrid, and Electric Vehicle Market Modeling Studies. Renew. Sustain. Energy Rev. 2013, 21, 190–203. Available online: https://api.semanticscholar.org/CorpusID:9288279 (accessed on 6 September 2023). [CrossRef]
- Musti, S.; Kockelman, K.M. Evolution of the Household Vehicle Fleet: Anticipating Fleet Composition, PHEV Adoption and GHG Emissions in Austin, Texas. Transp. Res. Part A Policy Pract. 2011, 45, 707–720. Available online: https://api.semanticscholar.org/CorpusID:15233028 (accessed on 6 September 2023). [CrossRef]
- Agbro, D.E.; Asthana, A. The Future of Hybrid Electric Vehicles and Sustainable Vehicles in the UK. Springer Proceedings in Energy, 2021. Available online: https://api.semanticscholar.org/CorpusID:235852693 (accessed on 6 September 2023).
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proc. IEEE 2021, 109, 967–984. Available online: https://api.semanticscholar.org/CorpusID:234788468 (accessed on 6 September 2023). [CrossRef]
- Drury, W. Electric Drive Systems are Constantly Evolving and Key to Defining Future Hybrid and Electric Vehicle Trends. Eng. Technol. Ref. 2015, 1. Available online: https://api.semanticscholar.org/CorpusID:110991512 (accessed on 6 September 2023). [CrossRef]
- Karki, A.; Phuyal, S.; Tuladhar, D.; Basnet, S.; Shrestha, B.P. Status of Pure Electric Vehicle Power Train Technology and Future Prospects. Appl. Syst. Innov. 2020, 3, 35. Available online: https://api.semanticscholar.org/CorpusID:221368580 (accessed on 6 September 2023). [CrossRef]
- Wang, N.; Tang, G. A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis. Sustainability 2022, 14, 3371. [Google Scholar] [CrossRef]
- Franzo, S.; Nasca, A. The Environmental Impact of Electric Vehicles: A Comparative LCA-based Evaluation Framework and Its Application to the Italian Context. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020. [Google Scholar]
- Zheng, G.; Peng, Z. Life Cycle Assessment (LCA) of BEVs Environmental Benefits for Meeting the Challenge of ICExit (Internal Combustion Engine Exit). Energy Rep. 2021, 7, 1203–1216. [Google Scholar] [CrossRef]
- Asher, Z.D.; Wifvat, V.; Navarro, A.; Samuelsen, S.; Bradley, T.; The Importance of HEV Fuel Economy and Two Research Gaps Preventing Real World Implementation of Optimal Energy Management. In SAE Technical Paper Series; 2017. Available online: https://www.sae.org/publications/technical-papers/content/2017-26-0106/ (accessed on 10 October 2023).
- Lyu, P.; Wang, P.S.; Liu, Y.; Wang, Y. Review of the Studies on Emission Evaluation Approaches for Operating Vehicles. J. Traffic Transp. Eng. 2021, 8, 493–509. [Google Scholar] [CrossRef]
- Ahmad, M.S.B.; Pesyridis, A.; Sphicas, P.; Andwari, A.M.; Gharehghani, A.; Vaglieco, B.M. Electric Vehicle Modelling for Future Technology and Market Penetration Analysis. Front. Mech. Eng. 2022, 8, 896547. [Google Scholar] [CrossRef]
- Dutta, P. Assessment of Environmental Implications of Electric Vehicles: A Review. J. Res. Eng. Appl. Sci. 2023, 6, 188–195. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, M.; Sun, X. An Overview of Modelling and Energy Management Strategies for Hybrid Electric Vehicles. Appl. Sci. 2023, 13, 5947. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
number of test cycles | Up to 4 |
cycle time | 30 min |
cycle distance | 23–25 km |
driving phase | 4 (more non-urban use) |
highest speed | 131 kph |
impact options | Yes |
gear shift | Variable |
test temperature | 23 °C |
Category | PMR | Speed Phase |
---|---|---|
Class 1 | PMR ≤ 22 | Low, middle |
Class 2 | 34 ≥ PMR ≥ 22 | Low, middle, high |
Class 3 | PMR > 34 | Low, middle, high, extra-high |
Test Date | Mean Duration of Trip (min) | Minimum Value (min) | Maximum Value (min) | Coefficient of Variation | Standard Deviation |
---|---|---|---|---|---|
1 | 123.67 | 93.25 | 154.08 | 0.35 | 43.01 |
2 | 100.64 | 86.43 | 118.97 | 0.17 | 16.66 |
3 | 96.45 | 91.90 | 99.75 | 0.04 | 4.07 |
Mean | 106.92 | 0.19 | 21.25 |
Test Date | Mean Duration of Trip (min) | Minimum Value (min) | Maximum Value (min) | Coefficient of Variation | Standard Deviation |
---|---|---|---|---|---|
1 | 90.14 | 61.03 | 119.25 | 0.46 | 41.17 |
2 | 92.69 | 87.12 | 99.60 | 0.07 | 6.35 |
3 | 103.33 | 85.92 | 129.20 | 0.22 | 22.84 |
Mean | 95.39 | 0.25 | 23.45 |
Test Date | Mean Duration of Trip (min) | Minimum Value (min) | Maximum Value (min) | Coefficient of Variation | Standard Deviation |
---|---|---|---|---|---|
1 | 90.40 | 82.99 | 94.51 | 0.07 | 6.43 |
2 | 91.80 | 86.75 | 97.17 | 0.06 | 5.22 |
3 | 92.85 | 79.79 | 107.18 | 0.15 | 13.74 |
Mean | 91.68 | 0.09 | 8.46 |
Vehicle Type | Mean Duration of Trips NS (min) | Coefficient of Variation | Standard Deviation |
---|---|---|---|
Mitsubishi iMiEV | 106.92 | 0.19 | 21.25 |
Mitsubishi Outlander PHEV | 95.39 | 0.25 | 23.45 |
Toyota Prius | 91.68 | 0.09 | 8.46 |
Speed Data (kph) | Vehicle Load (kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
50 | 100 | 150 | 50 | 100 | 150 | 50 | 100 | 150 | |
A ** | B ** | C ** | A ** | B ** | C ** | A | B | C | |
Mean | 20.13 ab | 19.14 a | 18.98 b | 23.80 ab | 20.17 a | 20.76 b | 20.63 | 21.91 | 19.02 |
Median | 16 | 16 | 15 | 19 | 13 | 15 | 15 | 16 | 14 |
Standard Deviation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Variance | 393.22 | 357.95 | 387.02 | 493.73 | 482.65 | 467.79 | 463.73 | 497.13 | 391.52 |
Skewness | 0.94 | 0.87 | 1.02 | 0.69 | 1.06 | 0.98 | 1.20 | 1.18 | 1.15 |
Kurtosis | 0.22 | −0.05 | 0.53 | −0.52 | 0.33 | 0.35 | 0.61 | 0.63 | 0.78 |
Minimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Maximum | 96 | 89 | 96 | 92 | 100 | 96 | 92 | 94 | 93 |
Range | 96 | 89 | 96 | 92 | 100 | 96 | 92 | 94 | 93 |
IQR | 31 | 31 | 31 | 39 | 34 | 35 | 29 | 31 | 29 |
Test Date | Distance Traveled (km) | Difference in SOC (%) | Fuel Fill-up (L) | Fuel Economy (km/L) | Energy Recharged (kWh) | Energy Consumption (kWh/100 km) | Energy Economy (km/kWh) | Charging Time (min) |
---|---|---|---|---|---|---|---|---|
1 | 24.00 | 37.50 | NA | NA | 2.40 | 10.00 | 10.00 | 10.58 |
2 | 24.00 | 34.17 | NA | NA | 4.30 | 17.92 | 5.61 | 15.29 |
3 | 24.00 | 32.67 | NA | NA | 4.23 | 17.64 | 5.68 | 14.34 |
Test Date | Distance Traveled (km) | Difference in SOC (%) | Fuel Fill-up (L) | Fuel Economy (km/L) | Energy Recharged (kWh) | Energy Consumption (kWh/100 km) | Energy Economy (km/kWh) | Charging Time (min) |
---|---|---|---|---|---|---|---|---|
1 | 24 | 37.17 | 3.33 | 9.33 | 3.43 | 14.30 | 16.63 | 18.29 |
2 | 24 | 55.00 | 1.41 | 17.11 | 4.93 | 20.56 | 4.86 | 19.00 |
3 | 24 | 55.00 | 1.20 | 21.00 | 4.93 | 20.56 | 4.86 | 18.36 |
Trial | Distance Traveled (km) | Difference in SOC (%) | Fuel Fill-up (L) | Fuel Economy (km/L) | Energy Recharged (kWh) | Energy Consumption (kWh/100 km) | Energy Economy (km/kWh) | Charging Time (min) |
---|---|---|---|---|---|---|---|---|
1 | 24 | −2.62 ‡ | 2.43 | 10.14 | NA | 10.14 | NA | NA |
2 | 24 | −0.91 ‡ | 1.45 | 17.73 | NA | 6.04 | NA | NA |
3 | 24 | 2.49 | 1.80 | 17.54 | NA | 7.50 | NA | NA |
Vehicle Type | Fuel Consumption (L/100 km) | Fuel Economy (km/L) | Energy Consumption (kWh/100 km) | Energy Economy (km/kWh) | Standard Fuel Consumption (L/100 km) | Standard Energy Consumption (kWh/100 km) | ||
---|---|---|---|---|---|---|---|---|
Canadian * | US DOE ** | Canada * | US DOE ** | |||||
Mitsubishi iMiEV | NA | NA | 15.18 | 7.10 | - | - | 16.9 b | 20.50 b |
Mitsubishi Outlander PHEV | 8.25 | 15.81 | 18.47 | 8.79 | 9.2 a | 9.0 a | - | - |
Toyota Prius | 7.89 | 15.14 | 7.89 | NA | 5.7 a | 6.2 a | - | - |
Vehicle Type | CO2 Emissions | Total CO2 Emissions d | Estimated Annual Emissions e (MT CO2) |
---|---|---|---|
Mitsubishi Outlander PHEV | 148.49 g/km b | 3563.87 g | 2.748 |
Toyota Prius | 155.07 g/km b | 3721.58 g | 2.870 |
Mitsubishi iMiEV a | 6.09859 × 10−5 c MT CO2/km | 1.463662 × 10−3 MT CO2 | 1.130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolome, G.J.C.; Santos, A.G.; Alano, L.M., II; Ardina, A.A.; Polinga, C.A. Assessment of the On-Road Performance of Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) in Urban Road Conditions in the Philippines. World Electr. Veh. J. 2023, 14, 333. https://doi.org/10.3390/wevj14120333
Bartolome GJC, Santos AG, Alano LM II, Ardina AA, Polinga CA. Assessment of the On-Road Performance of Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) in Urban Road Conditions in the Philippines. World Electric Vehicle Journal. 2023; 14(12):333. https://doi.org/10.3390/wevj14120333
Chicago/Turabian StyleBartolome, Gee Jay C., Ariel G. Santos, Lino M. Alano, II, Aileen A. Ardina, and Camilo A. Polinga. 2023. "Assessment of the On-Road Performance of Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) in Urban Road Conditions in the Philippines" World Electric Vehicle Journal 14, no. 12: 333. https://doi.org/10.3390/wevj14120333
APA StyleBartolome, G. J. C., Santos, A. G., Alano, L. M., II, Ardina, A. A., & Polinga, C. A. (2023). Assessment of the On-Road Performance of Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) in Urban Road Conditions in the Philippines. World Electric Vehicle Journal, 14(12), 333. https://doi.org/10.3390/wevj14120333