# Fuzzy Yaw Rate and Sideslip Angle Direct Yaw Moment Control for Student Electric Racing Vehicle with Independent Motors

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. EV Model

## 3. Proposed Controllers

#### 3.1. Desired Values Generation

#### 3.2. Proposed Control Methods

## 4. Simulation Results

#### Circular-Path Driving Test

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Un-noor, F.; Padmanaban, S.; Mihet-popa, L. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies
**2017**, 10, 1217. [Google Scholar] [CrossRef] [Green Version] - Ying, J.; Ramachandaramurthy, V.K.; Miao, K.; Mithulananthan, N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev.
**2015**, 49, 365–385. [Google Scholar] [CrossRef] - Tie, S.F.; Wei, C. A review of energy sources and energy management system in electric vehicles. Renew. Sustain. Energy Rev.
**2013**, 20, 82–102. [Google Scholar] [CrossRef] - Ivanov, V.; Savitski, D.; Member, S.; Lock, N.T.I. A Survey of Traction Control and Anti-lock Braking Systems of Full Electric Vehicles with Individually-Controlled Electric Motors. IEEE Trans. Veh. Technol.
**2014**, 64, 3878–3896. [Google Scholar] [CrossRef] - Novellis LDe Sorniotti, A.; Gruber, P.; Pennycott, A. Comparison of Feedback Control Techniques for Torque—Vectoring Control of Fully Electric Vehicles. IEEE Trans. Veh. Technol.
**2014**, 63, 3612–3623. [Google Scholar] [CrossRef] - Jing, H.; Jia, F.; Liu, Z. Multi-Objective Optimal Control Allocation for an Over-Actuated Electric Vehicle. IEEE Access
**2018**, 6, 4824–4833. [Google Scholar] [CrossRef] - Jang, Y.; Lee, M.; Suh, I.-S.; Nam, K.H. Lateral Handling Improvement with Dynamic Curvature Control for an Independent Rear Wheel Drive EV. Intern. J. Auto. Technol.
**2017**, 18, 505–510. [Google Scholar] - Jalali, K. Stability Control of Electric Vehicles with In-Wheel Motors. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2010; p. 256. [Google Scholar]
- Kelecy, P.M.; Lorenz, R.D. Control methodology for single inverter, parallel connected dual induction motor drives for electric vehicles. PESC Rec. IEEE Annu. Power Electron. Spec. Conf.
**1994**, 2, 987–991. [Google Scholar] - Profumo, F.; Zhang, Z.; Tenconi, A. Axial flux machines drives: A new viable solution for electric cars. IEEE Trans. Ind. Electron.
**1997**, 44, 39–45. [Google Scholar] [CrossRef] - Buckholtz, K.R. Use of Fuzzy Logic in Wheel Slip Assignment—Part I: Yaw Rate Control; SAE Technical Paper; SAE: Warrendale, PA, USA, 2002. [Google Scholar]
- Chen, Y.; Hedrick, J.K.; Guo, K. A novel direct yaw moment controller for in-wheel motor electric vehicles. Veh. Syst Dyn.
**2013**, 51, 925–942. [Google Scholar] [CrossRef] - Fu, C.; Hoseinnezhad, R.; Jazar, R.; Bab-Hadiashar, A.; Watkins, S. Electronic differential design for vehicle side-slip control. In Proceedings of the 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), Saigon, Vietnam, 26–29 November 2012; pp. 306–310. [Google Scholar]
- Abe, M. Vehicle dynamics and control for improving handling and active safety: From four-wheel steering to direct yaw moment control. Proc. Inst. Mech. Eng. Part K. J. Multi-Body Dyn.
**1999**, 213, 87–101. [Google Scholar] [CrossRef] - Research on Vehicle Stability Based on DYC and AFS Integrated Controller. Available online: https://www.scientific.net/AMM.278-280.1510 (accessed on 7 May 2022).
- Tchamna, R.; Youn, I. Yaw Rate and Side-Slip Control Considering Vehicle Longitudinal Dynamics. Int. J. Automot. Technol.
**2013**, 14, 53–60. [Google Scholar] [CrossRef] - Van Zanten, A.T.; Erhardt, R.; Pfaff, G. VDC, The Vehicle Dynamics Control System of Bosch; SAE Technical Paper; SAE: Warrendale, PA, USA, 1995. [Google Scholar]
- Parra, A.; Dendaluce, M.; Zubizarreta, A.; Pérez, J. Novel Fuzzy Torque Vectoring Controller for Electric Vehicles with Per-Wheel Motors. In Proceedings of the Actas las XXXVIII Jornadas Automática, Gijón, Spain, 6–8 September 2017. [Google Scholar]
- Design of Active Roll Control System and Integrated Chassis Control for Hybrid 4WD Vehicles. Available online: https://ieeexplore.ieee.org/abstract/document/6082889 (accessed on 7 May 2022).
- Street, F. Integrated AFS/DYC sliding mode controller for a hybrid electric vehicle. Int. J. Veh. Des.
**2011**, 56, 246–269. [Google Scholar] - Kwak, B.; Park, Y. Robust Vehicle Stability Controller Based On Multiple Sliding Mode Control; SAE Technical Paper; SAE: Warrendale, PA, USA, 2001. [Google Scholar]
- Fu, C. Direct Yaw Moment Control for Electric Vehicles with Independent Motors by Declaration of Authorship. 2014. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.660.4495&rep=rep1&type=pdf (accessed on 7 May 2022).
- Rowley, C.W.; Williams, D.R. Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech.
**2006**, 38, 251–276. [Google Scholar] [CrossRef] - Ren, H.; Shim, T.; Ryu, J.; Chen, S. Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations; SAE Technical Paper; SAE: Warrendale, PA, USA, 2014; p. 1. [Google Scholar]
- Ahmadi, J.; Sedigh, A.K.; Kabganian, M. Adaptive vehicle lateral-plane motion control using optimal tire friction forces with saturation limits consideration. IEEE Trans. Veh. Technol.
**2009**, 58, 4098–4107. [Google Scholar] [CrossRef] - Abe, M. Vehicle Handling Dynamics: Theory and Application, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–306. [Google Scholar]
- Jazar, R.N. Direct yaw moment control for electric and hybrid vehicles with independent motors. Int. J. Veh. Des.
**2015**, 69, 1–24. [Google Scholar] - Taylor, P.; Tahami, F.; Farhangi, S.; Kazemi, R. A Fuzzy Logic Direct Yaw-Moment Control System for All-Wheel-Drive Electric Vehicles. Veh. Syst. Dyn.
**2010**, 41, 37–41. [Google Scholar] - Viattchenin, D.A.; Tati, R.; Damaratski, A. Designing Gaussian membership functions for fuzzy classifier generated by heuristic possibilistic clustering. J. Inf. Organ. Sci.
**2013**, 37, 127–139. [Google Scholar] - Zhai, L.; Hou, R.; Sun, T.; Kavuma, S. Continuous steering stability control based on an energy-saving torque distribution algorithm for a four in-wheel-motor independent-drive electric vehicle. Energies
**2018**, 11, 350. [Google Scholar] [CrossRef] [Green Version] - Haiying, M.; Chaopeng, L.; Fu, W.Z. Direct Yaw-Moment Control Based on Fuzzy Logic of Four Wheel Drive Vehicle under the Cross Wind. Energy Procedia
**2017**, 105, 2310–2316. [Google Scholar] [CrossRef] - Zhai, L.; Sun, T.; Wang, J. Electronic Stability Control Based on Motor Driving and Braking Torque Distribution for a Four In-Wheel Motor Drive Electric Vehicle. IEEE Trans. Veh. Technol.
**2016**, 65, 4726–4739. [Google Scholar] [CrossRef] - Thesis, F.M. Control of a Four In-Wheel Motor Drive Electric Vehicle. Master’s Thesis, Universidad Politécnica de Cataluña, Bacelona, Spain, 2017. [Google Scholar]
- Zhao, B.; Xu, N.; Chen, H.; Guo, K.; Huang, Y. Stability control of electric vehicles with in-wheel motors by considering tire slip energy. Mech. Syst. Signal Process.
**2018**, 118, 340–359. [Google Scholar] [CrossRef] - Cormie, P.; Mcbride, J.M.; Mccaulley, G.O. Squat: Impact of Load Power-Time, Force-Time, and Velocity-Time Curve Analysis During the Jump Squat: Impact of Load. J. Appl. Biomech.
**2018**, 24, 112–120. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Wheel force system schematic [22].

**Figure 4.**The membership functions of (

**a**) the error, (

**b**) rate change of the error, and (

**c**) base toque.

**Figure 8.**Torque input of the driving right and left rear wheels: (

**a**): Equal torque controller, (

**b**): Yaw rate fuzzy controller, (

**c**): Sideslip angle fuzzy controller, (

**d**): Three PID controllers, (

**e**): Three fuzzy controllers, (

**f**): Fuzzy and PID controllers.

Description | Gains Symbol | Value |
---|---|---|

Speed tracking PID proportional gain | Kp_s | $3081.4$ |

Speed tracking PID integral gain | Ki_s | $4.32\times {10}^{-5}$ |

Speed tracking PID derivative gain | Kd_s | $13.84$ |

Yaw rate PID proportional gain | Kp_r | $492.59$ |

Yaw rate PID integral gain | Ki_r | $20.29$ |

Yaw rate PID derivative gain | Kd_r | $4.28$ |

Sideslip angle PID proportional gain | Kp_B | $7094.2$ |

Sideslip angle PID integral gain | Ki_B | $1.96\times {10}^{-4}$ |

Sideslip angle PID derivative gain | Kd_B | $4.33$ |

Error Change | NL | NS | Z | PS | PL | |
---|---|---|---|---|---|---|

Error | ||||||

NL | NL | NL | NS | NS | Z | |

NS | NL | NS | NS | Z | PS | |

Z | NS | NS | Z | PS | PS | |

PS | NS | Z | PS | PS | PL | |

PL | Z | PS | PS | PL | PL |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sawaqed, L.S.; Rabbaa, I.H.
Fuzzy Yaw Rate and Sideslip Angle Direct Yaw Moment Control for Student Electric Racing Vehicle with Independent Motors. *World Electr. Veh. J.* **2022**, *13*, 109.
https://doi.org/10.3390/wevj13070109

**AMA Style**

Sawaqed LS, Rabbaa IH.
Fuzzy Yaw Rate and Sideslip Angle Direct Yaw Moment Control for Student Electric Racing Vehicle with Independent Motors. *World Electric Vehicle Journal*. 2022; 13(7):109.
https://doi.org/10.3390/wevj13070109

**Chicago/Turabian Style**

Sawaqed, Laith Sami, and Israa Hasan Rabbaa.
2022. "Fuzzy Yaw Rate and Sideslip Angle Direct Yaw Moment Control for Student Electric Racing Vehicle with Independent Motors" *World Electric Vehicle Journal* 13, no. 7: 109.
https://doi.org/10.3390/wevj13070109