Cycling Infrastructure for All EPACs Included?
Abstract
:1. Introduction
1.1. Context
1.2. Literature
1.3. Research Gap
- What kind of cycling infrastructure should be provided according to different types of cyclists?
- Are the requirements different according to cyclists and non-cyclists?
- Are the requirements different according to EPAC users and conventional cyclists?
2. Materials and Methods
- General cycling path infrastructure;
- Infrastructure at cycling path stops;
- Aspects along cycling route;
- Signage along the cycling path.
3. Results
3.1. Hypotheses Testing on Construct Level
3.2. Hypothesis Testing on Item Level
3.2.1. Differences between Conventional Cyclists and EPAC Users
3.2.2. Differences between Cyclists and Non-Cyclists
4. Discussion and Conclusions
Implications for Policy and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Labels | Questions | Likert Scale |
---|---|---|
To what extent do the following cycling infrastructure factors influence your decision to cycle to work in the current situation? | ||
G1 | Poorly maintained cycle paths | Very bad influence (−2) Bad influence (−1) No influence (0) Positive influence (1) Very positive influence (2) |
G2 | Narrow cycle paths | |
G3 | No cycle paths | |
G4 | Dirt on the cycle path | |
G5 | Obstacles on the cycle path | |
To what extent are the following aspects along your cycle route important if you would cycle to work? | ||
A1 | Stopping places | Very unimportant (−2) Unimportant (−1) Neither important nor unimportance (0) Important (1) Very important (2) |
A2 | Quality of cycle paths | |
A3 | Safe crossing points | |
A4 | Wide cycle paths | |
A5 | Seeing the sky above your head | |
A6 | Rain cover when cycling | |
To what extent are the following aspects at a stopping place important if you take your cycle to work? | ||
I1 | Rest areas (benches, picnic areas) | Very unimportant (−2) Unimportant (−1) Neither important nor unimportance (0) Important (1) Very important (2) |
I2 | Secure bicycle parking | |
I3 | Charging points for EPACs | |
I4 | Mobility hubs | |
I5 | Vending machines | |
I6 | Parking facilities for cars at starting points | |
I7 | Cycle repair points | |
I8 | Sufficient waiting room | |
To what extent do the following signage elements on your cycle route motivate you to take your cycle to work? | ||
S1 | Smart traffic lights | Totally not motivating (−2) Not motivating (−1) Neither motivating nor motivating (0) Motivating (1) Very motivating (2) |
S2 | Speed signs | |
S3 | Smart traffic signs | |
S4 | Dynamic lane signs | |
S5 | Variable traffic signs | |
S6 | Advertising signs | |
S7 | Variable message signs | |
S8 | Overtaking lanes for fast cyclists | |
Indicate to what extent you find the following useful: The construction of wide asphalted bicycle highways | ||
P1 | Without a roof | Very useless (−2) Useless (−1) Neither useless, nor useful (0) Useful (1) Very useful (2) |
P2 | With a roof | |
P3 | With a roof made up of PV panels providing green energy which could be consumed locally |
References
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 10 February 2022).
- Bucher, D.; Buffat, R.; Froemelt, A.; Raubal, M. Energy and greenhouse gas emission reduction potentials resulting from different commuter electric bicycle adoption scenarios in Switzerland. Renew. Sustain. Energy Rev. 2019, 114, 109298. [Google Scholar] [CrossRef]
- Moser, C.; Blumer, Y.; Hille, S.L. E-bike trials’ potential to promote sustained changes in car owners mobility habits. Environ. Res. Lett. 2018, 13, 044025. [Google Scholar] [CrossRef]
- McQueen, M.; MacArthur, J.; Cherry, C. The E-Bike Potential: Estimating regional e-bike impacts on greenhouse gas emissions. Transp. Res. Part D Transp. Environ. 2020, 87, 102482. [Google Scholar] [CrossRef]
- Nematchoua, M.; Deuse, C.; Cools, M.; Reiter, S. Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Belgium. Renew. Sustain. Energy Rev. 2019, 119, 109544. [Google Scholar] [CrossRef]
- Cycling Industries Europe. Cycling Industries Europe 2021. Available online: https://cyclingindustries.com/ (accessed on 10 February 2022).
- European Cyclists’ Federation 2021. Available online: https://en.eurovelo.com/ecf (accessed on 10 February 2022).
- CONEBI. Confederation of the European Bicycle Industry; CONEBI: Brussels, Belgium, 2021; Available online: https://www.conebi.eu/industry-market-reports/ (accessed on 10 February 2022).
- Reid, C. E-Bike Sales to Grow from 3.7 Million to 17 Million per Year by 2030, Forecast Industry Experts, Forbes. 2020. Available online: https://www.forbes.com/sites/carltonreid/2020/12/02/e-bike-sales-to-grow-from-37-million-to-17-million-per-year-by-2030-forecast-industry-experts/ (accessed on 11 February 2021).
- TRAXIO. De Belgische Fietsmarkt in 2020; TRAXIO: Evere, Belgium, 2021; Available online: https://www.traxio.be/media/1vaoj5jm/2021-04-22_dossier_velo2020.pdf (accessed on 10 February 2022).
- Departement Mobiliteit & Openbare Werken. Onderzoek Verplaatsingsgedrag Vlaanderen (2019–2020). Available online: https://assets.vlaanderen.be/image/upload/v1608199124/Analyserapport_OVG_5.5_def2_mkh0go.pdf (accessed on 10 February 2022).
- Departement Mobiliteit & Openbare Werken. Onderzoek Verplaatsingsgedrag Vlaanderen 2018–2019. Available online: https://assets.vlaanderen.be/image/upload/v1597797656/ovg54-samenvatting_c3yyve.pdf (accessed on 10 February 2022).
- Departement Mobiliteit & Openbare Werken. Onderzoek Verplaatsingsgedrag 2017. Available online: https://assets.vlaanderen.be/image/upload/v1597797689/ovg53-samenvatting_zc0hzo.pdf (accessed on 10 February 2022).
- Rotthier, B.; Stevens, G.; Dikomitis, L.; Huyck, B.; Motoasca, E.; Cappelle, J. Typical cruising speed of speed pedelecs and the link with motor power as a result of a Belgian naturalistic cycling study. In Proceedings of the 6th International Cycling Safety Conference, Davis, CA, USA, 13 September 2017; pp. 21–23. [Google Scholar]
- Janssens, D.; Paul, R.; Wets, G. Onderzoek Verplaatsingsgedrag Vlaanderen 5.5 Tabellenrapport. 2020. Available online: https://www.vlaanderen.be/mobiliteit-en-openbare-werken/onderzoek-verplaatsingsgedrag-vlaanderen-ovg/onderzoek-verplaatsingsgedrag-vlaanderen-5 (accessed on 10 February 2022).
- Panter, J.; Heinen, E.; Mackett, R.; Ogilvie, D. Impact of New Transport Infrastructure on Walking, Cycling, and Physical Activity. Am. J. Prev. Med. 2016, 50, e45–e53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.; Hosking, J.; Woodward, A.; Witten, K.; Macmillan, A.; Field, A.; Baas, P.; Mackie, H. Systematic literature review of built environment effects on physical activity and active transport—An update and new findings on health equity. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 158. [Google Scholar] [CrossRef]
- Marqués, R.; Hernández-Herrador, V.; Calvo-Salazar, M.; García-Cebrián, J.A. How infrastructure can promote cycling in cities: Lessons from Seville. Res. Transp. Econ. 2015, 53, 31–34. [Google Scholar] [CrossRef]
- Félix, R.; Cambra, P.; Moura, F. Build it and give em bikes, and they will come: The effects of cycling infrastructure and bike-sharing system in Lisbon. Case Stud. Transp. Policy 2020, 8, 672–682. [Google Scholar] [CrossRef]
- Heinen, E.; Van Wee, B.; Maat, K. Commuting by Bicycle: An Overview of the Literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Dill, J.; Carr, T. Bicycle Commuting and Facilities in Major U.S. Cities: If You Build Them, Commuters Will Use Them. Transp. Res. Rec. 2003, 1828, 116–123. [Google Scholar] [CrossRef]
- Hull, A.; O’Holleran, C. Bicycle infrastructure: Can good design encourage cycling? Urban Plan. Transp. Res. 2014, 2, 369–406. [Google Scholar] [CrossRef] [Green Version]
- Garrard, J.; Rose, G.; Lo, S.K. Promoting transportation cycling for women: The role of bicycle infrastructure. Prev. Med. 2008, 46, 55–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.; McArthur, D.P.; Stewart, J.L. Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava). Transp. Res. Part A Policy Pract. 2020, 133, 109–121. [Google Scholar] [CrossRef]
- Rich, J.; Jensen, A.F.; Pilegaard, N.; Hallberg, M. Cost-benefit of bicycle infrastructure with e-bikes and cycle superhighways. Case Stud. Transp. Policy 2021, 9, 608–615. [Google Scholar] [CrossRef]
- Buekers, J.; Dons, E.; Elen, B.; Panis, L.I. Health impact model for modal shift from car use to cycling or walking in Flanders: Application to two bicycle highways. J. Transp. Health 2015, 2, 549–562. [Google Scholar] [CrossRef]
- Pucher, J.; Dill, J.; Handy, S. Infrastructure, programs, and policies to increase bicycling: An international review. Prev. Med. 2010, 50, S106–S125. [Google Scholar] [CrossRef]
- DiGioia, J.; Watkins, K.E.; Xu, Y.; Rodgers, M.; Guensler, R. Safety impacts of bicycle infrastructure: A critical review. J. Saf. Res. 2017, 61, 105–119. [Google Scholar] [CrossRef]
- Buehler, R.; Heinen, E.; Buehler, R. Bicycle parking: A systematic review of scientific literature on parking behaviour, parking preferences, and their influence on cycling and travel behavior. Transp. Rev. 2019, 39, 630–656. [Google Scholar]
- Steen, N.V.D.; Herteleer, B.; Cappelle, J.; Vanhaverbeke, L. Motivations and Barriers for Using Speed Pedelecs for Daily Commuting. World Electr. Veh. J. 2019, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- de Geus, B.; Hendriksen, I. Cycling for transport, physical activity and health: What about pedelecs? Cycl. Futur. Res. Pract. 2015, 28, 17–32. [Google Scholar]
- Vanparijs, J.; Van Cauwenberg, J.; Panis, L.I.; Van Hecke, E.; Gillis, D.; Gautama, S.; Meeusen, R.; de Geus, B. Cycling exposure and infrastructural correlates in a Flemish adolescent population. J. Transp. Health 2019, 16, 100812. [Google Scholar] [CrossRef]
- Félix, R.; Moura, F.; Clifton, K.J. Maturing urban cycling: Comparing barriers and motivators to bicycle of cyclists and non-cyclists in Lisbon, Portugal. J. Transp. Health 2019, 15, 100628. [Google Scholar] [CrossRef]
- de Geus, B.; Wuytens, N.; Deliens, T.; Keserü, I.; Macharis, C.; Meeusen, R. Psychosocial and environmental correlates of cycling for transportation in Brussels. Transp. Res. Part A Policy Pract. 2018, 123, 80–90. [Google Scholar] [CrossRef]
- Simons, D.; De Bourdeaudhuij, I.; Clarys, P.; De Cocker, K.; De Geus, B.; Vandelanotte, C.; Van Cauwenberg, J.; Deforche, B. Psychosocial and environmental correlates of active and passive transport behaviors in college educated and non-college educated working young adults. PLoS ONE 2017, 12, e0174263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Geus, B.; De Bourdeaudhuij, I.; Jannes, C.; Meeusen, R. Psychosocial and environmental factors associated with cycling for transport among a working population. Health Educ. Res. 2007, 23, 697–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaanderen, M. Vademecum Fietsvoorzieningen. 2017. Available online: https://www.mobielvlaanderen.be/vademecums/vademecumfiets01.php (accessed on 10 February 2022).
- European Commission. Basic Quality Design Principles for Cycle Infrastructure and Networks. Available online: https://transport.ec.europa.eu/transport-themes/clean-transport-urban-transport/cycling/guidance-cycling-projects-eu/cycling-infrastructure-quality-design-principles/basic-quality-design-principles-cycle-infrastructure-and-networks_en (accessed on 11 February 2022).
- Calvey, J.; Shackleton, J.; Taylor, M.D.; Llewellyn, R. Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort. Transp. Res. Part A Policy Pract. 2015, 78, 134–143. [Google Scholar] [CrossRef]
- Vallejo-Borda, J.A.; Rosas-Satizábal, D.; Rodriguez-Valencia, A. Do attitudes and perceptions help to explain cycling infrastructure quality of service? Transp. Res. Part D Transp. Environ. 2020, 87, 102539. [Google Scholar] [CrossRef]
- Herteleer, B.; van den Steen, N.; Vanhaverbeke, L.; Cappelle, J. Analysis of Initial Speed Pedelec Usage for Commuting Purposes in Flanders. Transp. Res. Interdiscip. Perspect. 2022, 14, 100589. [Google Scholar] [CrossRef]
- Twisk, D.; Stelling, A.; Van Gent, P.; De Groot, J.; Vlakveld, W. Speed characteristics of speed pedelecs, pedelecs and conventional bicycles in naturalistic urban and rural traffic conditions. Accid. Anal. Prev. 2020, 150, 105940. [Google Scholar] [CrossRef]
- Schleinitz, K.; Petzoldt, T.; Franke-Bartholdt, L.; Krems, J.; Gehlert, T. The German Naturalistic Cycling Study—Comparing cycling speed of riders of different e-bikes and conventional bicycles. Saf. Sci. 2017, 92, 290–297. [Google Scholar] [CrossRef]
- Hallberg, M.; Rasmussen, T.K.; Rich, J. Modelling the impact of cycle superhighways and electric bicycles. Transp. Res. Part A Policy Pract. 2021, 149, 397–418. [Google Scholar] [CrossRef]
- Provinicie Antwerpen. Fietsonderzoek 2017; Provinicie Antwerpen: Antwerpen, Belgium, 2018; Available online: https://www.provincieantwerpen.be/content/dam/provant/drem/dienst-mobiliteit/fietsbeleid/fietsbarometer/fietsenqu%C3%AAte/Provant_Fietsonderzoek_2017_rapport_DV.pdf (accessed on 10 February 2022).
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Bonferroni, C. Teoria Statistica Delle Classi e Calcolo Delle Probabilita. In Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze; Seeber International Bookshop: Florence, Italy, 1936; pp. 3–62. [Google Scholar]
- Schepers, P.; Helbich, M.; Hagenzieker, M.; de Geus, B.; Dozza, M.; Agerholm, N.; Niska, A.; Airaksinen, N.; Papon, F.; Gerike, R.; et al. The development of cycling in European countries since 1990. Eur. J. Transp. Infrastruct. Res. 2021, 21, 41–70. [Google Scholar]
Company 1 | Company 2 | Company 3 | Company 4 | |
---|---|---|---|---|
Employees (n) | ±120 | ±600 | ±350 | +3000 |
Respondents (n) | 24 | 53 | 25 | 778 |
Gender (ref: female), n, (%) | 7, (29%) | 11, (21%) | 9, (36%) | 545, (70%) |
Age in years (Age in 2021) (), (SD) | 47, (11) | 42, (10) | 38, (8) | 41, (12) |
Commute distance in km (), (SD) | 38, (27) | 31, (23) | 23, (22) | 16, (13) |
Non Cyclists | Cyclists | EPAC Users | Conventional Cyclists | |
---|---|---|---|---|
= | + | |||
Respondents (n) | 578 | 302 | 137 | 165 |
Gender (ref. female), n, (%) | 384, (66%) | 189, (63%) | 95, (69%) | 94, (57%) |
Age in years (Age in 2021) (median), (SD) | 39, (12) | 41, (11) | 44, (12) | 40, (11) |
Commute distance in km (), (SD) | 20, (15) | 14, (13) | 12, (9) | 16, (16) |
Construct | Label | Items | Non-Cyclists | Cyclists | EPAC Users | Conventional Cyclists | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Means (SD) | λ * | Means (SD) | λ | Means (SD) | λ | Means (SD) | λ | ||||
General cycle infrastructure | α = 0.92 | α = 0.89 | α = 0.88 | α = 0.89 | |||||||
G1 | Poorly maintained cycle paths | −1.0 (0.9) | 0.866 | −0.8 (0.7) | 0.800 | −0.8 (0.8) | 0.769 | −0.8 (0.7) | 0.827 | ||
G2 | Narrow cycle paths | −0.7 (0.8) | 0.861 | −0.6 (0.7) | 0.773 | −0.6 (0.8) | 0.750 | −0.6 (0.6) | 0.797 | ||
G3 | No cycle paths | −1.1 (0.9) | 0.829 | −0.9 (0.9) | 0.789 | −0.9 (0.9) | 0.772 | −0.9 (0.9) | 0.811 | ||
G4 | Dirt on the cycle path | −0.6 (0.7) | 0.767 | −0.6 (0.7) | 0.781 | −0.6 (0.7) | 0.807 | −0.5 (0.7) | 0.759 | ||
G5 | Obstacles on the cycle path | −0.9 (0.8) | 0.866 | −0.8 (0.8) | 0.784 | −0.8 (0.8) | 0.802 | −0.8 (0.8) | 0.769 | ||
Aspects along cycling route | α = 0.77 | α = 0.90 | α = 0.84 | α = 0.84 | α = 0.83 | ||||||
A1 | Stopping places | −0.3 (1.1) | 0.289 | / | −0.7 (1.0) | / | −0.8 (1.1) | / | −0.7 (1.0) | / | |
A2 | Quality of cycle paths | 1.2 (1.0) | 0.902 | 0.910 | 1.4 (0.7) | 0.823 | 1.5 (0.7) | 0.846 | 1.4 (0.7) | 0.794 | |
A3 | Safe crossing points | 1.3 (0.9) | 0.911 | 0.911 | 1.5 (0.7) | 0.797 | 1.6 (0.7) | 0.862 | 1.5 (0.7) | 0.736 | |
A4 | Wide cycle paths | 0.9 (1.0) | 0.792 | 0.782 | 1.1 (0.8) | 0.769 | 1.1 (0.9) | 0.728 | 1.1 (0.7) | 0.830 | |
A5 | Seeing the sky above your head | −0.1 (1.1) | 0.268 | / | 0.1 (1.2) | / | 0.3 (1.2) | / | 0.0 (1.2) | / | |
A6 | Rain cover when cycling | 0.3 (1.0) | 0.391 | / | −0.1 (1.2) | / | −0.1 (1.2) | / | −0.1 (1.1) | / | |
Infrastructure at stops | α = 0.86 | α = 0.84 | α = 0.83 | α = 0.84 | |||||||
I1 | Rest areas (benches and picnic areas) | −0.6 (1.1) | 0.664 | −1.1 (1.0) | 0.572 | −1.2 (1.0) | 0.572 | −1.0 (1.0) | 0.573 | ||
I2 | Secure bicycle parking | 0.9 (1.3) | 0.559 | 0.9 (1.3) | 0.425 | 0.8 (1.4) | 0.443 | 1.0 (1.3) | 0.420 | ||
I3 | Charging points for EPACs | 0.5 (1.3) | 0.690 | 0.2 (1.4) | 0.652 | 0.5 (1.4) | 0.607 | 0.0 (1.3) | 0.746 | ||
I4 | Mobility hubs | 0.2 (1.1) | 0.715 | 0.0 (1.2) | 0.713 | 0.1 (1.2) | 0.744 | −0.1 (1.2) | 0.709 | ||
I5 | Vending machines | −0.8 (1.1) | 0.617 | −1.1 (1.0) | 0.608 | −1.2 (1.0) | 0.595 | −1.0 (1.0) | 0.609 | ||
I6 | Parking facilities for cars at starting points | 0.4 (1.3) | 0.629 | −0.4 (1.4) | 0.654 | −0.5 (1.3) | 0.717 | −0.3 (1.5) | 0.617 | ||
I7 | Cycle repair points | 0.0 (1.1) | 0.680 | 0.0 (1.2) | 0.685 | −0.2 (1.2) | 0.639 | 0.1 (1.2) | 0.715 | ||
I8 | Sufficient waiting room | −0.2 (1.1) | 0.726 | −0.6 (1.1) | 0.753 | −0.6 (1.1) | 0.707 | −0.6 (1.1) | 0.776 | ||
Signage along the cycling infrastructure | α = 0.85 | α = 0.84 | α = 0.82 | α = 0.86 | |||||||
S1 | Smart traffic lights | 0.7 (0.8) | 0.714 | 0.9 (0.9) | 0.680 | 0.9 (1.0) | 0.624 | 0.8 (0.9) | 0.743 | ||
S2 | Speed signs | 0.2 (0.8) | 0.684 | 0.0 (0.9) | 0.754 | 0.0 (0.9) | 0.762 | 0.1 (0.9) | 0.745 | ||
S3 | Smart traffic signs | 0.4 (0.8) | 0.840 | 0.4 (0.9) | 0.861 | 0.4 (1.0) | 0.839 | 0.4 (0.9) | 0.884 | ||
S4 | Dynamic lane signs | 0.4 (0.8) | 0.868 | 0.3 (0.9) | 0.862 | 0.3 (1.0) | 0.854 | 0.4 (0.8) | 0.877 | ||
S5 | Variable traffic signs | 0.3 (0.8) | 0.899 | 0.3 (0.9) | 0.828 | 0.2 (0.9) | 0.780 | 0.4 (0.8) | 0.869 | ||
S6 | Advertising signs | −0.8 (0.9) | 0.089 | −1.0 (0.9) | 0.109 | −1.1 (0.9) | 0.073 | −0.9 (0.9) | 0.121 | ||
S7 | Variable message signs | 0.1 (0.8) | 0.635 | 0.0 (0.9) | 0.519 | 0.0 (1.0) | 0.484 | 0.1 (0.9) | 0.537 | ||
S8 | Overtaking lanes for fast cyclists | 0.5 (0.9) | 0.567 | 0.7 (1.0) | 0.466 | 0.7 (1.1) | 0.419 | 0.7 (0.9) | 0.509 | ||
Wide asphalted bicycle highways | |||||||||||
P1 | Without a roof | 0.8 (0.9) | 1.1 (0.8) | 1.2 (0.8) | 1.1 (0.8) | ||||||
P2 | With a roof | 0.5 (0.9) | 0.2 (1.2) | 0.2 (1.2) | 0.2 (1.2) | ||||||
P3 | With a roof made up of PV panels providing green energy which could be consumed locally | 0.9 (1.0) | 0.8 (1.1) | 0.8 (1.1) | 0.8 (1.1) |
Constructs | Cyclists vs. Non-Cyclists (p-Value) | Null Hypothesis Failed to Reject/Rejected | EPAC Users vs. CC (p-Value) | Null Hypothesis Failed to Reject/Rejected |
---|---|---|---|---|
General | 0.8445 | Failed to reject | 0.4871 | Failed to reject |
Aspects | 0.0001674 | Rejected | 0.7233 | Failed to reject |
Stops | 0.7496 | Failed to reject | 0.8385 | Failed to reject |
Signage | 0.1651 | Failed to reject | 0.7178 | Failed to reject |
Non-Cyclists | Cyclists | EPAC Users | Conventional Cyclists | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
1. Gender | - | - | - | - | ||||||||
2. Age | 0.11 | - | 0.08 | - | −0.02 | - | 0.19 | - | ||||
3. Commute distance | −0.09 | −0.07 | - | −0.1 | −0.02 | - | −0.15 | −0.06 | - | −0.05 | 0 | - |
4. General | 0.01 | 0.18 | 0.11 | 0.06 | −0.08 | −0.13 | 0.13 | −0.02 | −0.19 | −0.01 | −0.17 | −0.09 |
5. Aspects | 0.13 | −0.13 | −0.06 | 0.07 | −0.12 | −0.06 | 0.13 | −0.06 | −0.15 | −0.01 | −0.14 | −0.04 |
6. Stops | 0.19 | −0.08 | 0.1 | 0.07 | 0.07 | 0.13 | 0.06 | 0.04 | 0.13 | 0.06 | 0.08 | 0.12 |
7. Signage | −0.07 | −0.16 | 0.06 | −0.07 | 0.01 | 0.03 | −0.14 | 0.05 | 0.09 | −0.01 | −0.05 | −0.02 |
Construct | Label | Item | Cyclists vs. Non-Cyclists | EPAC Users vs. CC |
---|---|---|---|---|
Mann–Whitney U-Test | ||||
General cycle infrastructure | p-values | |||
G1 | Poorly maintained cycle paths | <0.05 | 0.49 | |
G2 | Narrow cycle paths | 0.05 | 0.85 | |
G3 | No cycle paths | <0.01 | 0.93 | |
G4 | Dirt on the cycle path | 0.24 | 0.58 | |
G5 | Obstacles on the cycle path | 0.27 | 0.85 | |
Aspects along cycling route | ||||
A1 | Stopping places | <0.001667 | 0.18 | |
A2 | Quality of cycle paths | <0.01 | <0.05 | |
A3 | Safe crossing points | <0.01 | <0.01 | |
A4 | Wide cycle paths | <0.01 | 0.32 | |
A5 | Seeing the sky above your head | <0.001667 | 0.11 | |
A6 | Rain cover when cycling | <0.001667 | 0.74 | |
Infrastructure at stops | ||||
I1 | Rest areas (benches and picnic areas) | <0.001667 | 0.10 | |
I2 | Secure bicycle parking | 0.77 | 0.55 | |
I3 | Charging points for EPACs | <0.05 | <0.001667 | |
I4 | Mobility hubs | <0.01 | 0.16 | |
I5 | Vending machines | <0.001667 | 0.24 | |
I6 | Parking facilities for cars at starting points | <0.001667 | 0.16 | |
I7 | Cycle repair points | 0.56 | 0.09 | |
I8 | Sufficient waiting room | <0.001667 | 0.68 | |
Signage along the cycling infrastructure | ||||
S1 | Smart traffic lights | <0.001667 | 0.53 | |
S2 | Speed signs | <0.05 | 0.24 | |
S3 | Smart traffic signs | 0.67 | 0.38 | |
S4 | Dynamic lane signs | 0.57 | 0.18 | |
S5 | Variable traffic signs | 0.54 | 0.09 | |
S6 | Advertising signs | <0.001667 | <0.05 | |
S7 | Variable message signs | 0.98 | 0.30 | |
S8 | Overtaking lanes for fast cyclists | <0.001667 | 0.74 | |
Wide asphalted bicycle highways | ||||
P1 | Without a roof | <0.001667 | 0.19 | |
P2 | With a roof | <0.001667 | 0.87 | |
P3 | With a PV panel roof | 0.662 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van den Steen, N.; de Geus, B.; Cappelle, J.; Vanhaverbeke, L. Cycling Infrastructure for All EPACs Included? World Electr. Veh. J. 2022, 13, 74. https://doi.org/10.3390/wevj13050074
Van den Steen N, de Geus B, Cappelle J, Vanhaverbeke L. Cycling Infrastructure for All EPACs Included? World Electric Vehicle Journal. 2022; 13(5):74. https://doi.org/10.3390/wevj13050074
Chicago/Turabian StyleVan den Steen, Nikolaas, Bas de Geus, Jan Cappelle, and Lieselot Vanhaverbeke. 2022. "Cycling Infrastructure for All EPACs Included?" World Electric Vehicle Journal 13, no. 5: 74. https://doi.org/10.3390/wevj13050074