# Analysis and Research on Power Supply Strategies of Electric Vehicles Based on Wind Farms

## Abstract

**:**

## 1. Introduction

## 2. Overview of Basic Principles of Wind Power Generation

## 3. Materials and Methods

#### 3.1. Design of Transmission Line Conductors

#### 3.1.1. Preliminary Selection of Line Conductors

#### 3.1.2. Conductor Cost Analysis and Calculation

#### 3.1.3. Summary

#### 3.2. Selection of Tower

#### 3.2.1. Calculation of Line Parameters of Tower A

^{−6}s/km when two conductors of AAC 31.5 mm are used to form a two split line. The resistance is 0.02465 Ω/km.

#### 3.2.2. Calculation of Line Parameters of Tower B

^{−6}s/km when two conductors of AAC 31.5 mm are used to form a two split line. The resistance is 0.02465 Ω/km.

#### 3.2.3. Calculation of Line Parameters of Tower C

^{−6}s/km when two conductors of AAC 31.5 mm are used to form a two split line. The resistance is 0.02465 Ω/km.

#### 3.2.4. Summary

## 4. Experiment

_{B}= 230 kV, and the system reference capacity is set as S

_{B}= 100 MVA. Then, the reference impedance Z

_{B}is 529 Ω/km.

_{pu}/X

_{pu}/Y

_{pu}is

#### 4.1. Bus 5 (25 km)

- (1)
- Simulation of tower A connected to bus 5

- (2)
- Simulation of tower B connected to bus 5

- (3)
- Simulation of tower C connected to bus 5

#### 4.2. Bus 6 (300 km)

- (1)
- Simulation of tower A connected to bus 6

- (2)
- Simulation of tower B connected to bus 6

- (3)
- Simulation of tower C connected to bus 6

#### 4.3. Bus 8 (150 km)

- (1)
- Simulation of tower A connected to bus 8

- (2)
- Simulation of tower B connected to bus 8

- (3)
- Simulation of tower C connected to bus 8

#### 4.4. Bus 4 (500 km)

- (1)
- Simulation of tower A connected to bus 4

- (2)
- Simulation of tower B connected to bus 4

- (3)
- Simulation of tower C connected to bus 4

## 5. Results

## 6. Discussion

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Altenburg, T.; Bhasin, S.; Fischer, D.J.I. Development. Sustainability-oriented innovation in the automobile industry: Advancing electromobility in China, France, Germany and India. Innov. Dev.
**2012**, 2, 67–85. [Google Scholar] [CrossRef] - Khaled (Moh’d Khalaf), S.A. A New Energy Concept. J. Energy Power Eng.
**2016**, 10, 116–120. [Google Scholar] [CrossRef] - Qi, S.; Lin, Z.; Song, J.; Lin, X.; Liu, Y.; Ni, M.; Wang, B. Research on Charging-Discharging Operation Strategy for Electric Vehicles Based on Different Trip Patterns for Various City Types in China. World Electr. Veh. J.
**2022**, 13, 7. [Google Scholar] [CrossRef] - Martins, F.; Felgueiras, C.; Smitková, M.; Caetano, N.S.J.E. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies
**2019**, 12, 964. [Google Scholar] [CrossRef] [Green Version] - Sarkar, M.; Altin, M.; Sørensen, P.E.; Hansen, A.D.J.E. Reactive Power Capability Model of Wind Power Plant Using Aggregated Wind Power Collection System. Energies
**2019**, 12, 1607. [Google Scholar] [CrossRef] [Green Version] - Fox, J.; Ela, E.; Hobbs, B.; Sharp, J.; Novacheck, J.; Motley, A.; Bessa, R.J.; Pinson, P.; Kariniotakis, G.J.I.P.; Magazine, E. Forecasting and Market Design Advances: Supporting an Increasing Share of Renewable Energy. IEEE Power Energy Mag.
**2021**, 19, 77–85. [Google Scholar] [CrossRef] - Liu, Y.; Zhu, Q.; Cao, F.; Chen, J.; Lu, G. High-Resolution Remote Sensing Image Segmentation Framework Based on Attention Mechanism and Adaptive Weighting. ISPRS Int. J. Geo-Inf.
**2021**, 10, 241. [Google Scholar] [CrossRef] - Wei, D.; Chen, C. The Current Situation and Development Trend of Automobile Sales Mode Under The Strategy of High Speed Development of Big Data. In Proceedings of the 2020 5th International Conference on Economics Development, Business & Management (EDBM 2020), Cologne, Germany, 23–25 March 2020. [Google Scholar]
- Dewan, S. Indian Passenger Vehicle Industry: Growth Momentum to Continue; ICRA Limited: Gurgaon, India, 2011. [Google Scholar]
- Ming, Z.; Song, X.; Ming-juan, M.; Xiaoli, Z.J.R.; Reviews, S.E. New energy bases and sustainable development in China: A review. Renew. Sustain. Energy Rev.
**2013**, 20, 169–185. [Google Scholar] [CrossRef] - Zhu, Q.; Liu, Y.; Liu, M.; Zhang, S.; Chen, G.; Meng, H. Intelligent Planning and Research on Urban Traffic Congestion. Futur. Internet
**2021**, 13, 284. [Google Scholar] [CrossRef] - Kaza, N.J.E.P. Urban form and transportation energy consumption. Energy Policy
**2020**, 136, 111049. [Google Scholar] [CrossRef] - Wu, Z.; Shao, Q.; Su, Y.; Zhang, D.J.T.F.; Change, S. A socio-technical transition path for new energy vehicles in China: A multi-level perspective. Technol. Forecast. Soc. Chang.
**2021**, 172, 121007. [Google Scholar] [CrossRef] - Ordoneš Ponce, E.; Khare, A. GRI 300 as a measurement tool for the United Nations sustainable development goals: Assessing the impact of car makers on sustainability. J. Environ. Plan. Manag.
**2020**, 64, 47–75. [Google Scholar] [CrossRef] - Liu, Y.; Dou, J.; Ye, J.; Li, M.; Tian, L.; Zeng, M. Research on the Current Situation of Renewable Energy Exploitation in Typical Countries in the World. IOP Conf. Ser. Earth Environ. Sci.
**2018**, 170, 042034. [Google Scholar] [CrossRef] - Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K.J.E.P. Institutional quality, green innovation and energy efficiency. Energy Policy
**2019**, 135, 111002. [Google Scholar] [CrossRef] - Arshad, M.; Kelly, B. Global status of wind power generation: Theory, practice, and challenges. Int. J. Green Energy
**2019**, 16, 1073–1090. [Google Scholar] [CrossRef] - Li, Z.; Guo, P.; Han, R.; Sun, H. Current status and development trend of wind power generation-based hydrogen production technology. Energy Explor. Exploit.
**2019**, 37, 5–25. [Google Scholar] [CrossRef] - Kuznetsov, P.; Rimar, M.; Yakimovich, B.; Kulikova, O.; Lopuaniak, M.; Voronin, D.; Evstigneev, V.P.J.A.S. Parametric Optimization of Combined Wind-Solar Energy Power Plants for Sustainable Smart City Development. Appl. Sci.
**2021**, 11, 10351. [Google Scholar] [CrossRef] - Fatchurrahman, R.; Zakaria, A.B. The Feasibility Study of a Wind Power Generation in Terms of Electric Power System Operation and Economic Aspect: Case Study of Tanah Laut WPG on Kalimantan Interconnection System. In Proceedings of the 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), Bandung, Indonesia, 23–24 September 2020; pp. 329–333. [Google Scholar]
- Rojas, J.P.; García, G.R.; Castillo, D.V. Economic and Environmental Multiobjective Optimization of a Hybrid Power Generation System using Solar and Wind Energy Source. Int. J. Energy Econ. Policy
**2022**, 12, 494–499. [Google Scholar] [CrossRef] - Weschenfelder, F.; de Novaes Pires Leite, G.; Araújo da Costa, A.C.; de Castro Vilela, O.; Ribeiro, C.M.; Villa Ochoa, Á.A.; Araújo, A.M. A review on the complementarity between grid-connected solar and wind power systems. J. Clean. Prod.
**2020**, 257, 120617. [Google Scholar] [CrossRef] - Cherp, A.; Vinichenko, V.; Jewell, J.; Suzuki, M.; Antal, M.J.E.P. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy
**2017**, 101, 612–628. [Google Scholar] [CrossRef] [Green Version] - Handschy, M.A.; Rose, S.; Apt, J. Is it always windy somewhere? Occurrence of low-wind-power events over large areas. Renew. Energy
**2017**, 101, 1124–1130. [Google Scholar] [CrossRef] [Green Version] - Jia, Q.-S.; Wu, J. A Structural Property of Charging Scheduling Policy for Shared Electric Vehicles with Wind Power Generation. IEEE Trans. Control. Syst. Technol.
**2021**, 29, 2393–2405. [Google Scholar] [CrossRef] - Asiedu, B.A.; Hassan, A.A.; Bein, M.A. Renewable energy, non-renewable energy, and economic growth: Evidence from 26 European countries. Environ. Sci. Pollut. Res.
**2020**, 28, 11119–11128. [Google Scholar] [CrossRef] [PubMed] - Valone, T.F. Linear Global Temperature Correlation to Carbon Dioxide Level, Sea Level, and Innovative Solutions to a Projected 6 °C Warming by 2100. J. Geosci. Environ. Prot.
**2021**, 09, 84–135. [Google Scholar] [CrossRef] - Liu, Z.; Liu, X.; Zhao, F. Research on NEV Platform Development Strategies for Automotive Companies. World Electr. Veh. J.
**2021**, 12, 201. [Google Scholar] [CrossRef] - Wang, M.; Wu, F.; Chen, J. Comprehensive Analyses of the Spatio-Temporal Variation of New-Energy Vehicle Charging Piles in China: A Complex Network Approach. Front. Phys.
**2021**, 9, 628. [Google Scholar] [CrossRef] - Iqbal, S.; Xin, A.; Jan, M.U.; Salman, S.; Zaki, A.u.M.; Rehman, H.U.; Shinwari, M.F.; Abdelbaky, M.A. V2G Strategy for Primary Frequency Control of an Industrial Microgrid Considering the Charging Station Operator. Electronics
**2020**, 9, 549. [Google Scholar] [CrossRef] [Green Version] - Mo, W.; Yang, C.; Chen, X.; Lin, K.; Duan, S.J.E. Optimal Charging Navigation Strategy Design for Rapid Charging Electric Vehicles. Energies
**2019**, 12, 962. [Google Scholar] [CrossRef] [Green Version] - Huang, K.; Liu, P.; Ming, B.; Kim, J.S.; Gong, Y. Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water. Appl. Energy
**2021**, 290, 116805. [Google Scholar] [CrossRef] - Alvarez Guerrero, J.D.; Bhattarai, B.; Shrestha, R.; Acker, T.L.; Castro, R. Integrating Electric Vehicles into Power System Operation Production Cost Models. World Electr. Veh. J.
**2021**, 12, 263. [Google Scholar] [CrossRef] - Gasch, R.; Twele, J. Planning, Operation and Economics of Wind Farm Projects; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Guan, Y.; Wang, Y.; Tan, Z. Environmental Protection and Security Considered Dynamic Economic Dispatch for Wind Farm Integrated Systems. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March 2012; pp. 1–4. [Google Scholar]
- Kan, K.; Yang, Z.; Lyu, P.; Zheng, Y.; Shen, L. Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method. Renew. Energy
**2021**, 168, 960–971. [Google Scholar] [CrossRef] - Lun, L.; Zhang, Y.; Zhu, H.-J.; Conference, E.E. Conductor selection of transmission line connected to wind farm considering the operation characteristic. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 8–11 December 2013; pp. 1–6. [Google Scholar]
- Roscher, B.; Schelenz, R.; Harzendorf, F.; Jacobs, G. Reduced Levelized Cost of Energy through Optimization of Tower Height, Rotor Diameter and Wind Farm Layout. Am. J. Engin. Res.
**2018**, 7, 130–138. [Google Scholar] - Rehman, S.; Mohammed, A.B.; Alhems, L.M.J.E. A Heuristic Approach to Siting and Design Optimization of an Onshore Wind Farm Layout. Energies
**2020**, 13, 5946. [Google Scholar] [CrossRef] - Ajenikoko, G.A.; Adeleke, B.S. Effect of temperature change on the resistance of transmission line losses in electrical power network. Int. J. Renew. Energy Technol. Res.
**2017**, 6, 1–8. [Google Scholar] - Mo, Y.; Wang, Y.; Liang, L.; Li, H.; Zhang, Q.; Niu, Z. Study on the Impacts of Uncertain Meteorological Parameters on Line Transmission Capacity. Int. J. Emerg. Electr. Power Syst.
**2018**, 19, 19. [Google Scholar] [CrossRef] - Sugihara, H.; Funaki, T. Analysis on Temperature Dependency of Effective AC Conductor Resistance of Underground Cables for Dynamic Line Ratings in Smart Grids. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; pp. 2637–2643. [Google Scholar]
- van Benthem, R.C.; Grave, W.d.; Doctor, F.; Nuyten, K.; Taylor, S.; Jacques, P.A. Thermal analysis of wiring for weight reduction and improved safety. In Proceedings of the National Aerospace Laboratory NLR. NLR-TP. AIAA/ICES Conference, Portland, OR, USA, 18–21 July 2011. [Google Scholar]
- Xuming, L.J.H.V.E. Operation Losses and Economic Evaluation of UHVAC and HVDC Transmission Systems. High Volt. Eng.
**2013**, 39, 630–635. [Google Scholar]

**Figure 1.**Simulation results with Tower A connected to bus 5 (25 km). (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 2.**Simulation results with Tower B connected to bus 5 (25 km). (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 3.**Simulation results with Tower C connected to bus 5 (25 km). (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 4.**Simulation results with Tower A connected to bus 6 (300 km). (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 5.**Simulation results when tower A is connected to bus 6 (300 km) after adding inductance. (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 6.**Simulation results with Tower B connected to bus 6 (300 km). (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 7.**Simulation results when tower B is connected to bus 6 (300 km) after adding inductance. (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 8.**Simulation results with Tower C connected to bus 6 (300 km). (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 9.**Simulation results when tower C is connected to bus 6 (300 km) after adding inductance. (

**a**) The results under the maximum load condition and (

**b**) the results under the maximum load condition with reactor.

**Figure 10.**Simulation results of the minimum load of tower A connected to bus No. 8 (150 km). (

**a**) The results under the minimum load condition and (

**b**) minimum load condition with reducing Wind Farm output.

**Figure 11.**Simulation results of the maximum load of tower A connected to bus No. 8 (150 km). (

**a**) Maximum load condition, (

**b**) Maximum load condition with reducing Wind Farm output.

**Figure 12.**Simulation results when tower B is connected to bus 8 (150 km) after adding inductance. (

**a**) The results under the minimum load condition and (

**b**) the results under the maximum load condition.

**Figure 13.**Simulation results of the minimum load of tower C connected to bus 8 (500 km). (

**a**) Minimum load condition. (

**b**) Minimum load condition with reactor.

**Figure 14.**Simulation results of the maximum load of tower C connected to bus 4 (500 km). (

**a**) Maximum load condition. (

**b**) Maximum load condition with reactor.

Conductor Type/Diameter | Resistance Value R of a Bundle of Transmission Lines |
---|---|

AAC 9.0 mm diameter | 0.579 Ω/km |

AAC 16.3 mm diameter | 0.183 Ω/km |

AAC 21.0 mm diameter | 0.11 Ω/km |

AAC 26.3 mm diameter | 0.0706 Ω/km |

AAC 31.5 mm diameter | 0.0493 Ω/km |

**Table 2.**Different types of conductors. Current rating (A) (summer, no wind); Conductor cost ($ per km); and resistance value R (Ω/km).

1 Conductor | 2 Conductors | 3 Conductors | 4 Conductors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

Type Diameter | A | Cost | R(Ω/km) | A | Cost | R(Ω/km) | A | Cost | R(Ω/km) | A | Cost | R(Ω/km) |

9.0 mm | 110 | 4300 | 0.579 | 220 | 8600 | 0.2895 | 330 | 12,900 | 0.193 | 440 | 17,200 | 0.14475 |

16.3 mm | 216 | 6700 | 0.183 | 432 | 13,400 | 0.0915 | 648 | 20,100 | 0.061 | 864 | 26,800 | 0.04575 |

21.0 mm | 299 | 9000 | 0.11 | 598 | 18,000 | 0.055 | 897 | 27,000 | 0.0367 | 1196 | 36,000 | 0.0275 |

26.3 mm | 405 | 12,300 | 0.0706 | 810 | 24,600 | 0.0353 | 1215 | 36,900 | 0.02353 | 1620 | 49,200 | 0.01765 |

31.5 mm | 495 | 16,300 | 0.0493 | 990 | 32,600 | 0.02465 | 1485 | 48,900 | 0.016433 | 1980 | 65,200 | 0.012325 |

Num | Conductor Type/Diameter | Conductor Bundling Options | Current Rating (A) | Conductor Cost ($ per km) | Installation Cost (including Bundling Spacers) | Resistance Value R(Ω/km) |
---|---|---|---|---|---|---|

1 | AAC 16.3 mm | 3 conductors | 648 | 20,100 | 40,000 | 0.06100 |

2 | AAC 16.3 mm | 4 conductors | 864 | 26,800 | 45,000 | 0.04575 |

3 | AAC 21.0 mm | 2 conductors | 598 | 18,000 | 35,000 | 0.05500 |

4 | AAC 21.0 mm | 3 conductors | 897 | 27,000 | 40,000 | 0.03667 |

5 | AAC 21.0 mm | 4 conductors | 1196 | 36,000 | 45,000 | 0.02750 |

6 | AAC 26.3 mm | 2 conductors | 810 | 24,600 | 35,000 | 0.03530 |

7 | AAC 26.3 mm | 3 conductors | 1215 | 36,900 | 40,000 | 0.02353 |

8 | AAC 26.3 mm | 4 conductors | 1620 | 49,200 | 45,000 | 0.01765 |

9 | AAC 31.5 mm | 1 conductor | 495 | 16,300 | 30,000 | 0.04930 |

10 | AAC 31.5 mm | 2 conductors | 990 | 32,600 | 35,000 | 0.02465 |

11 | AAC 31.5 mm | 3 conductors | 1485 | 48,900 | 40,000 | 0.01643 |

12 | AAC 31.5 mm | 4 conductors | 1980 | 65,200 | 45,000 | 0.01233 |

Num | Conductor Type/Diameter | Conductor Bundling Options | The Total Cost of Operation for 1 Year is $ |
---|---|---|---|

9 | 31.5 mm | 1 conductor | 51,589.25772 |

3 | 21.0 mm | 2 conductors | 58,900.79462 |

6 | 26.3 mm | 2 conductors | 63,387.23728 |

1 | 16.3 mm | 3 conductors | 66,644.51767 |

10 | 31.5 mm | 2 conductors | 70,244.62886 |

4 | 21.0 mm | 3 conductors | 70,934.22071 |

2 | 16.3 mm | 4 conductors | 76,708.38825 |

7 | 26.3 mm | 3 conductors | 79,424.46723 |

5 | 21.0 mm | 4 conductors | 83,950.39731 |

11 | 31.5 mm | 3 conductors | 90,662.72828 |

8 | 26.3 mm | 4 conductors | 96,093.61864 |

12 | 31.5 mm | 4 conductors | 111,522.8509 |

1 Year | 3 Years | 5 Years | 10 Years | 15 Years | 20 Years | |
---|---|---|---|---|---|---|

The total cost is sorted from small to large | 9 | 9 | 9 | 10 | 10 | 10 |

3 | 3 | 6 | 6 | 7 | 11 | |

6 | 6 | 10 | 9 | 11 | 7 | |

1 | 10 | 3 | 7 | 6 | 8 | |

10 | 4 | 4 | 4 | 8 | 6 | |

4 | 1 | 7 | 11 | 5 | 12 | |

2 | 7 | 1 | 5 | 9 | 5 | |

7 | 2 | 5 | 3 | 4 | 4 | |

5 | 5 | 2 | 8 | 12 | 9 | |

11 | 11 | 11 | 2 | 3 | 2 | |

8 | 8 | 8 | 12 | 2 | 3 | |

12 | 12 | 12 | 1 | 1 | 1 |

Tower-Type | R (Ω/km) | X (Ω/km) | B (10^{−6} S/km) | Cost ($ per km) |
---|---|---|---|---|

A | 0.02465 | 0.243595238 | 4.64589 | 62,000 |

B | 0.02465 | 0.249576481 | 4.53094 | 74,000 |

C | 0.02465 | 0.256594624 | 4.40311 | 76,000 |

Number | Configuration | R (PU/km) | X (PU/km) | B (PU/km) | R’ (PU) | X’ (PU) | G’(PU) | B’ (PU) |
---|---|---|---|---|---|---|---|---|

1 | Tower A, Bus 5 (25 km) | 0.0000466 | 0.00046 | 0.002458 | 0.001165 | 0.01151 | 0.000 | 0.06144 |

2 | Tower B, Bus 5 (25 km) | 0.0000466 | 0.000472 | 0.002397 | 0.001165 | 0.011794 | 0.000 | 0.05992 |

3 | Tower C, Bus 5 (25 km) | 0.0000466 | 0.000485 | 0.002329 | 0.001165 | 0.012125 | 0.000 | 0.05823 |

4 | Tower A, Bus 6 (300 km) | 4.66 × 10^{−5} | 0.00046 | 0.002458 | 0.013508 | 0.135835 | 0.000646 | 0.743625 |

5 | Tower B, Bus 6 (300 km) | 4.66 × 10^{−5} | 0.000472 | 0.002397 | 0.013508 | 0.1391743 | 0.000615 | 0.725225 |

6 | Tower C, Bus 6 (300 km) | 4.66 × 10^{−5} | 0.000485 | 0.002329 | 0.013509 | 0.143086 | 0.000581 | 0.704755 |

7 | Tower A, Bus 8 (150 km) | 0.0000466 | 0.00046 | 0.002458 | 0.00693 | 0.06878 | 0.00008 | 0.369435 |

8 | Tower B, Bus 8 (150 km) | 0.0000466 | 0.000472 | 0.002397 | 0.00693 | 0.0704732 | 0.000076 | 0.360296 |

9 | Tower C, Bus 8 (150 km) | 0.0000466 | 0.000485 | 0.002329 | 0.00693 | 0.0724533 | 0.0000714 | 0.350129 |

10 | Tower A, Bus 4 (500 km) | 4.66 × 10^{−5} | 0.00046 | 0.002458 | 0.0211477 | 0.219643 | 0.0031052 | 1.258646 |

11 | Tower B, Bus 4 (500 km) | 4.66 × 10^{−5} | 0.000472 | 0.002397 | 0.0211494 | 0.2250446 | 0.002953 | 1.227488 |

12 | Tower C, Bus 4 (500 km) | 4.66 × 10^{−5} | 0.000485 | 0.002329 | 0.0211513 | 0.2313719 | 0.002788 | 1.192825 |

Scheme Number | Tower | Bus | Reactor (Each Cost 25 MVar) | Losses in Minimum Load Condition (MW) | Losses in Maximum Load Condition (MW) |
---|---|---|---|---|---|

1 | A | Bus 5 | 0 | 6.4111 | 5.6479 |

2 | B | Bus 5 | 0 | 6.4131 | 5.6498 |

3 | C | Bus 5 | 0 | 6.4154 | 5.6518 |

4 | A | Bus 6 | 1 | 12.1589 | 11.5594 |

5 | B | Bus 6 | 1 | 11.4649 | 11.6279 |

6 | C | Bus 6 | 1 | 11.4595 | 11.7152 |

10 | A | Bus 4 | 2 | 11.5370 | 14.5357 |

11 | B | Bus 4 | 2 | 11.6687 | 14.7109 |

12 | C | Bus 4 | 2 | 11.8451 | 14.9421 |

Scheme Number | Tower | Tower Cost $ per km | Total Cost $ |
---|---|---|---|

1 | A | 62,000 | 3,240,000 |

2 | B | 74,000 | 3,540,000 |

3 | C | 76,000 | 3,590,000 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Y.
Analysis and Research on Power Supply Strategies of Electric Vehicles Based on Wind Farms. *World Electr. Veh. J.* **2022**, *13*, 38.
https://doi.org/10.3390/wevj13020038

**AMA Style**

Liu Y.
Analysis and Research on Power Supply Strategies of Electric Vehicles Based on Wind Farms. *World Electric Vehicle Journal*. 2022; 13(2):38.
https://doi.org/10.3390/wevj13020038

**Chicago/Turabian Style**

Liu, Yunjia.
2022. "Analysis and Research on Power Supply Strategies of Electric Vehicles Based on Wind Farms" *World Electric Vehicle Journal* 13, no. 2: 38.
https://doi.org/10.3390/wevj13020038