Benefits of an Electric Road System for Battery Electric Vehicles
Abstract
:1. Introduction
1.1. Literature Review
1.2. Our Contributions
2. Methodology
2.1. Electric Road System
2.2. Car Movements Patterns
2.3. Stationary Charging Patterns
2.4. BEV Energy Use and Required Battery Range
2.5. Vehicle Cost Savings
2.6. ERS Costs
2.7. Stationary Slow Charging Infrastructure Specifications and Costs
2.8. Treatment of Fast Charging
3. Results
3.1. Selecting Roads with the Highest Traffic Increases ERS Utilization
3.2. ERS Utilization Is Not Very Dependent on Annual Travel Distance but Urban/Rural Residence
3.3. Combining ERS with Stationary Charging Significantly Reduces the Required Battery Range
3.4. ERS without Stationary Charging Is Feasible for Many but Not All Vehicles
3.5. Urban Residence Requires Smaller Battery Range
3.6. Savings from Smaller Batteries Can Be Sufficient to Recover ERS Infrastructure Cost
3.7. ERS or ERS with HomeSC Would Provide Relatively High Net Savings Compared to Their Costs
3.8. When Drivers Maximize or Minimize Their ERS Utilization
3.9. ERS Reduces Peak Power Grid Consumption by Distributing Charging throughout the Day
4. Discussion
4.1. Data and Analysis
4.2. ERS Placement, Coverage, and Economics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stelling, P. Policy instruments for reducing CO2-emissions from the Swedish freight transport sector. Res. Transp. Bus. Manag. 2014, 12, 47–54. [Google Scholar] [CrossRef]
- Swedish Environmental Protection Agency. Fördjupad Analys av den Svenska Klimatomställningen 2020-Klimat och Luft i Fokus (In-depth Analysis of the Swedish Climate Transition 2020-Climate and Air Pollution in Focus); Swedish Environmental Protection Agency: Stockholm, Sweden, 2020.
- de Coninck, H.; Revi, A.; Babiker, M.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; Dong, W.; Ford, J.; Fuss, S.; Hourcade, J.C.; et al. Strengthening and Implementing the Global Response. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- MIT Energy Initiative. Insights into Future Mobility; MIT Energy Initiative: Cambridge, MA, USA, 2019. [Google Scholar]
- Swedish Government. Regeringens Proposition 2019/20:65 En Samlad Politik för Klimatet–Klimatpolitisk Handlingsplan (Governmental Bill 2019/20:65 Joint Policy for Climate Change-Climate Policy Action Plan); Swedish Government: Stockholm, Sweden, 2020.
- Mouli, G.R.C.; Venugopal, P.; Bauer, P. Future of electric vehicle charging. In Proceedings of the 19th International Power Electronics, Novi Sad, Serbia, 19–21 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Morrissey, P.; Weldon, P.; O’Mahony, M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy 2016, 89, 257–270. [Google Scholar] [CrossRef]
- Limb, B.J.; Asher, Z.D.; Bradley, T.H.; Sproul, E.; Trinko, D.A.; Crabb, B.; Zane, R.; Quinn, J.C. Economic Viability and Environmental Impact of In-Motion Wireless Power Transfer. IEEE Trans. Transp. Electrif. 2019, 5, 135–146. [Google Scholar] [CrossRef]
- Taiebat, M.; Xu, M. Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-to-grid, and vehicle automation. J. Clean. Prod. 2019, 230, 794–797. [Google Scholar] [CrossRef]
- García-Vázquez, C.A.; Llorens-Iborra, F.; Fernández-Ramírez, L.M.; Sánchez-Sainz, H.; Jurado, F. Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches. Energy 2017, 137, 42–57. [Google Scholar] [CrossRef]
- Chen, F.; Taylor, N.; Kringos, N. Electrification of roads: Opportunities and challenges. Appl. Energy 2015, 150, 109–119. [Google Scholar] [CrossRef]
- Taljegard, M.; Thorson, L.; Odenberger, M.; Johnsson, F. Large-scale implementation of electric road systems: Associated costs and the impact on CO 2 emissions. Int. J. Sustain. Transp. 2019, 14, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Jöhrens, J.; Helms, H.; Nebauer, G.; Jelica, D. Feasibility Study of Swedish-German Corridor with Electric Road System. In Proceedings of the Annual Transport Conference at Aalborg University, Aalborg, Denmark, 22–23 August 2022; pp. 1–4. [Google Scholar]
- Kühnel, S.; Hacker, F.; Görz, W. Oberleitungs-Lkw im Kontext Weiterer Antriebs-Und Energieversorgungsoptionen für den Straßengüterfernverkehr. 2018. Available online: https://www.oeko.de/fileadmin/oekodoc/StratON-O-Lkw-Technologievergleich-2018.pdf (accessed on 1 June 2020).
- Connolly, D. A Comparison between Oil, Battery Electric Costs; Aalborg Universitet: Copenhagen, Denmark, 2016; pp. 1–43. Available online: https://vbn.aau.dk/en/publications/eroads-a-comparison-between-oil-battery-electric-vehicles-and-ele (accessed on 1 June 2020).
- Taljegard, M.; Göransson, L.; Odenberger, M.; Johnsson, F. Spacial and dynamic energy demand of the E39 highway–Implications on electrification options. Appl. Energy 2017, 195, 681–692. [Google Scholar] [CrossRef]
- Fyhr, P.; Domingues, G.; Andersson, M.; Márquez-Fernández, F.J.; Bängtsson, H.; Alaküla, M. Electric roads: Reducing the societal cost of automotive electrification. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo, ITEC, Chicago, IL, USA, 22–24 June 2017; pp. 773–778. [Google Scholar] [CrossRef]
- Willerström, J. Modelling CO2 Emissions from Passenger Cars for Swedish Municipalities Swedish Municipalities. Uppsala University, 2019. Available online: https://www.utn.uu.se/sts/student/wp-content/uploads/2019/06/1906_Jakob_Willerstr%C3%B6m.pdf (accessed on 1 June 2020).
- Lutsey, N.; Nicholas, M. Update on Electric Vehicle Costs in the United States through 2030. Int. Counc. Clean Transp. 2019, 1–12. Available online: https://theicct.org/sites/default/files/publications/EV_cost_2020_2030_20190401.pdf (accessed on 1 August 2020).
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; van Mierlo, J. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Kapustin, N.O.; Grushevenko, D.A. Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy 2020, 137, 111103. [Google Scholar] [CrossRef]
- Viktoria Swedish, I.C.T. Slide-In Electric Road System. Gothenburg, Sweden. 2013. Available online: https://www.viktoria.se/sites/default/files/pub/www.viktoria.se/upload/publications/slide-in_inductive_project_report_draft_phase_1_2013-10-18.pdf (accessed on 1 June 2020).
- Domingues-Olavarría, G. Modeling, optimization and analysis of electromobility systems. Ph.D. Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Fyhr, P. Electromobility: Materials and Manufacturing Economics. Ph.D. Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- den Boer, E.; Aarnink, S.; Kleiner, F.; Pagenkopf, J. Zero Emissions Trucks: An Overview of State-of-the-Art Technologies and their Potential. 2013. Available online: https://www.cedelft.eu/publicatie/zero_emission_trucks/1399 (accessed on 1 June 2020).
- Highways England. Feasibility Study: Powering Electric Vehicles on England’s Major Roads; Transport Research Laboratory: Guildford, UK, 2015. [Google Scholar]
- Fuller, M. Wireless charging in California: Range, recharge, and vehicle electrification. Transp. Res. Part C Emerg. Technol. 2016, 67, 343–356. [Google Scholar] [CrossRef]
- Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar] [CrossRef]
- Marquez-Fernandez, F.J.; Bischoff, J.; Domingues-Olavarria, G.; Alakula, M. Assessment of Future EV Charging Infrastructure Scenarios for Long-Distance Transport in Sweden. IEEE Trans. Transp. Electrif. 2022, 8, 615–626. [Google Scholar] [CrossRef]
- Domingues-Olavarría, G.; Márquez-Fernández, F.J.; Fyhr, P.; Reinap, A.; Alaküla, M. Electric roads: Analyzing the societal cost of electrifying all Danish road transport. World Electr. Veh. J. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, W.; Yin, Y. Deployment of stationary and dynamic charging infrastructure for electric vehicles along traffic corridors. Transp. Res. Part C Emerg. Technol. 2017, 77, 185–206. [Google Scholar] [CrossRef] [Green Version]
- Swedish Transport Administration. “Trafikverket”. Trafikverket. 2019. Available online: https://www.trafikverket.se/en (accessed on 1 August 2020).
- Nyland, B. Tesla Model 3 SRP Range Tested. Insideevs. 2021. Available online: https://insideevs.com/news/501789/2021-tesla-model3-srp-range/ (accessed on 14 July 2022).
- Jang, Y.J. Survey of the operation and system study on wireless charging electric vehicle systems. Transp. Res. Part C Emerg. Technol. 2018, 95, 844–866. [Google Scholar] [CrossRef]
- Stamati, T.E.; Bauer, P. On-road charging of electric vehicles. In Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC’13) Components, Systems, and Power Electronics-From Technology to Business and Public Policy, ITEC 2013, Dearborn, MI, USA, 16–19 June 2013. [Google Scholar] [CrossRef]
- Karlsson, S. The Swedish Car Movement Data Project Final Report. 2013. Available online: https://research.chalmers.se/en/publication/187380 (accessed on 1 August 2020).
- Jakobsson, N.; Gnann, T.; Plötz, P.; Sprei, F.; Karlsson, S. Are multi-car households better suited for battery electric vehicles?-Driving patterns and economics in Sweden and Germany. Transp. Res. Part C Emerg. Technol. 2016, 65, 1–15. [Google Scholar] [CrossRef]
- Copernicus. 2018. Available online: https://www.copernicus.eu/en (accessed on 1 May 2020).
- Shoman, W.; Demirel, H. Impedance measures in evaluating accessibility change. Geocarto Int. 2020, 37, 3642–3657. [Google Scholar] [CrossRef]
- Shoman, W.; Alganci, U.; Demirel, H. A comparative analysis of gridding systems for point-based land cover/use analysis. Geocarto Int. 2019, 34, 867–886. [Google Scholar] [CrossRef]
- Björnsson, L.H.; Karlsson, S. Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability. Appl. Energy 2015, 143, 336–347. [Google Scholar] [CrossRef] [Green Version]
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Chung, D.; Elgqvist, E.; Santhanagopalan, S. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations. Joule 2016, 1, 229–243. Available online: www.nrel.gov/publications.%0Ahttp://www.osti.gov/servlets/purl/1333041/%0A (accessed on 1 May 2020). [CrossRef] [Green Version]
- Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2017, 2, 17110. [Google Scholar] [CrossRef] [Green Version]
- Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Mongird, K.; Viswanathan, V.V.; Balducci, P.J.; Alam, M.J.E.; Fotedar, V.; Koritarov, V.S.; Hadjerioua, B. Energy Storage Technology and Cost Characterization Report. Pacific Northwest Natl. Lab. 2019, 1–120. Available online: https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Performance%20Characterization%20Report_Final.pdf (accessed on 1 May 2020).
- Karlsson, S. Utilization of battery-electric vehicles in two-car households: Empirical insights from Gothenburg Sweden. Transp. Res. Part C Emerg. Technol. 2020, 120, 102818. [Google Scholar] [CrossRef]
- Hjortsberg, O. Slide-in Technology for Continuous Energy Transfer to Electric Vehicles, Phase 2; Stockholm, Sweden, 2018. [Google Scholar]
- Kristensson, J. Är Elvägar Lösningen på en ”Monumental Utmaning”? (Are Electric Roads the Solution on an ‘Monumental Challenge’?). NyTeknik. March 2020. Available online: https://www.nyteknik.se/premium/ar-elvagar-losningen-pa-en-monumental-utmaning-6990176 (accessed on 1 May 2020).
- World Road Association (PIARC). Electric Road Systems: A Solution for the Future? World Road Association (PIARC): Washington, DC, USA, 2018. [Google Scholar]
- Swedish National Audit Office. Operation and Maintenance of of Public Roads–Considerably More Expensive Than Agreed. 2019. Available online: https://www.riksrevisionen.se/en/audit-reports/audit-reports/2019/operation-and-maintenanceof-public-roads---considerably-more-expensive-than-agreed.html (accessed on 1 June 2020).
- Brazil, R. Recharging the future. Educ. Chem. 2017, 54, 24–27. [Google Scholar]
- Amsterdam Roundtable Foundation and McKinsey & Company. Electric Vehicles in Europe: Gearing Up for a New Phase? [Online]. 2014. Available online: https://www.mckinsey.com/FEATURED-INSIGHTS/EUROPE/ELECTRIC-VEHICLES-IN-EUROPE-GEARING-UP-FOR-A-NEW-PHASE# (accessed on 1 June 2020).
- Chen, Y. hua. Intelligent algorithms for cold chain logistics distribution optimization based on big data cloud computing analysis. J. Cloud Comput. 2020, 9. [Google Scholar] [CrossRef]
- Swedish Transport Administration. Infrastructure for Fast Charging along Larger Roads; Swedish Transport Administration: Luleå, Sweden, 2018.
- Power Circle. Laddinfrastrukturstatistik (Statistics on Public Charging Infrastructure). elbilsstatistik.se, 2021. Available online: https://www.elbilsstatistik.se/ (accessed on 1 September 2020).
- Gnann, T.; Funke, S.; Jakobsson, N.; Plötz, P.; Sprei, F.; Bennehag, A. Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transp. Res. Part D Transp. Environ. 2018, 62, 314–329. [Google Scholar] [CrossRef]
- Statistics Sweden. Passenger Cars in Use by Region and Type of Ownership. Year 2002–2019. 2019. Available online: http://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__TK__TK1001__TK1001A/PersBilarA/ (accessed on 1 May 2020).
- Lusth, T.; Dalheim, M.; Karlsson, J.; Morén, G.; Wahlberg, S. The Swedish Electricity and Natural Gas Markets 2018. no. R2019:03. 2019, p. 80. Available online: https://www.ei.se/PageFiles/313846/Ei_R2018_11.pdf (accessed on 1 June 2020).
- Morfeldt, J.; Shoman, W.; Johansson, D.J.A.; Yeh, S.; Karlsson, S. If Electric Cars Are Good for Reducing Emissions, They Could Be Even Better with Electric Roads. Environ. Sci. Technol. 2022, 56, 9593–9603. [Google Scholar] [CrossRef]
- Karlsson, S. What are the value and implications of two-car households for the electric car? Transp. Res. Part C Emerg. Technol. 2017, 81, 1–17. [Google Scholar] [CrossRef]
- Rolim, C.C.; Gonçalves, G.N.; Farias, T.L.; Rodrigues, Ó. Impacts of Electric Vehicle Adoption on Driver Behavior and Environmental Performance. Procedia-Soc. Behav. Sci. 2012, 54, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Lazzeroni, P.; Cirimele, V.; Canova, A. Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions. Renew. Sustain. Energy Rev. 2020, 138, 110537. [Google Scholar] [CrossRef]
- Cirimele, V.; Diana, M.; Freschi, F.; Mitolo, M. Inductive Power Transfer for Automotive Applications: State-of-the-Art and Future Trends. IEEE Trans. Ind. Appl. 2018, 54, 4069–4079. [Google Scholar] [CrossRef]
- Swedish Transport Administration. Need for Charging Infrastructure for Fast Charging of Heavy Transport along Larger Roads; Swedish Transport Administration: Luleå, Zweden, 2021.
- Bi, Z.; Kan, T.; Mi, C.C.; Zhang, Y.; Zhao, Z.; Keoleian, G.A. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef]
- Regeringskansliet. Regler för Statliga Elvägar ‘Regulation of Public Electric Roads’, Stockholm, Sweden, 2021. [Online]. Available online: https://www.regeringen.se/rattsliga-dokument/statens-offentliga-utredningar/2021/09/sou-202173/ (accessed on 1 November 2021).
Stationary Charging Pattern | ERS | Median Battery Range (km) | ||
---|---|---|---|---|
All Residents | Rural Residents | Urban Residents | ||
HomeSC | No ERS | 266 | 278 | 262 |
E and N25 | 101 | 110 | 93 | |
E and N100 | 78 | 90 | 70 | |
MixedSC | No ERS | 223 | 227 | 220 |
E and N25 | 91 | 98 | 85 | |
E and N100 | 68 | 76 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoman, W.; Karlsson, S.; Yeh, S. Benefits of an Electric Road System for Battery Electric Vehicles. World Electr. Veh. J. 2022, 13, 197. https://doi.org/10.3390/wevj13110197
Shoman W, Karlsson S, Yeh S. Benefits of an Electric Road System for Battery Electric Vehicles. World Electric Vehicle Journal. 2022; 13(11):197. https://doi.org/10.3390/wevj13110197
Chicago/Turabian StyleShoman, Wasim, Sten Karlsson, and Sonia Yeh. 2022. "Benefits of an Electric Road System for Battery Electric Vehicles" World Electric Vehicle Journal 13, no. 11: 197. https://doi.org/10.3390/wevj13110197